On the advantages of mixed formulation and higher-order elements for computational morphoelasticity
Tài liệu tham khảo
Ambrosi, 2011, Perspectives on biological growth and remodeling, J. Mech. Phys. Solids, 59, 863, 10.1016/j.jmps.2010.12.011
Armstrong, 2016, A finite element model for mixed porohyperelasticity with transport, swelling, and growth, PLoS ONE, 11, 10.1371/journal.pone.0152806
Audoly, 2008, Buckling of a stiff film bound to a compliant substrate: part I-III, J. Mech. Phys. Solids, 56, 2401, 10.1016/j.jmps.2008.03.003
BenAmar, 2005, Growth and instability in elastic tissues, J. Mech. Phys. Solids, 53, 2284, 10.1016/j.jmps.2005.04.008
Bonet, 1997
Brezzi, 1991
Budday, 2017, Wrinkling instabilities in soft bilayered systems, Phil. Trans. R. Soc. A, 375, 10.1098/rsta.2016.0163
Budday, 2014, The role of mechanics during brain development, J. Mech. Phys. Solids, 72, 75, 10.1016/j.jmps.2014.07.010
Cai, 2011, Periodic patterns and energy states of buckled films on compliant substrates, J. Mech. Phys. Solids, 59, 1094, 10.1016/j.jmps.2011.02.001
Cao, 2012, From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling, Proc. R. Soc. A, 468, 94, 10.1098/rspa.2011.0384
Coen, 2004, The genetics of geometry, Proc. Natl. Acad. Sci., 101, 4728, 10.1073/pnas.0306308101
Dai, 2014, On a consistent finite-strain plate theory based on a 3-D energy principle, Proc. R. Soc. A, 470, 10.1098/rspa.2014.0494
Dervaux, 2009, Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl-von Kármán limit, J. Mech. Phys. Solids, 57, 458, 10.1016/j.jmps.2008.11.011
Dortdivanlioglu, 2017, Computational aspects of morphological instabilities using isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 316, 261, 10.1016/j.cma.2016.06.028
Dortdivanlioglu, 2019, Diffusion-driven swelling-induced instabilities of hydrogels, J. Mech. Phys. Solids, 125, 38, 10.1016/j.jmps.2018.12.010
Du, 2020, Analytical study on growth-induced bending deformations of multi-layered hyperelastic plates, Int. J. Non-Linear Mech., 119, 10.1016/j.ijnonlinmec.2019.103370
Egunov, 2016, Polydimethylsiloxane bilayer films with embedded spontaneous curvature, Soft Matter, 12, 45, 10.1039/C5SM01139F
Garcia-Gonzalez, 2019, Energy based mechano-electrophysiological model of CNS damage at the tissue scale, J. Mech. Phys. Solids, 125, 22, 10.1016/j.jmps.2018.12.009
Garcia-Gonzalez, 2018, A continuum mechanics constitutive framework for transverse isotropic soft tissues, J. Mech. Phys. Solids, 112, 209, 10.1016/j.jmps.2017.12.001
Geuzaine, 2009, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 1309, 10.1002/nme.2579
Green, 1996, Transductions to generate plant form and pattern: an essay on cause and effect, Ann. Botany, 78, 269, 10.1006/anbo.1996.0121
Guennebaud, 2010
Holmes, 2019, Elasticity and stability of shape-shifting structures, Curr. Opin. Colloid Interface Sci., 40, 118, 10.1016/j.cocis.2019.02.008
Holmes, 2011, Bending and twisting of soft materials by non-homogenous swelling, Soft Matter, 7, 5188, 10.1039/c0sm01492c
Hossain, 2015, Eight-chain and full-network models and their modified versions for rubber hyperelasticity: A comparative study, J. Mech. Behav. Mater., 24, 11, 10.1515/jmbm-2015-0002
Hossain, 2010, A finite strain framework for the simulation of polymer curing. Part II. Viscoelasticity and shrinkage, Comput. Mech., 46, 363, 10.1007/s00466-010-0479-z
Hossain, 2013, More hyperelastic models for rubber-like materials: Consistent tangent operator and comparative study, J. Mech. Behav. Mater., 22, 27, 10.1515/jmbm-2012-0007
Ilseng, 2019, Buckling initiation in layered hydrogels during transient swelling, J. Mech. Phys. Solids, 128, 219, 10.1016/j.jmps.2019.04.008
Ionov, 2013, Biomimetic hydrogel-based actuating systems, Adv. Funct. Mater., 23, 4555, 10.1002/adfm.201203692
Jones, 2012, Modeling Growth in Biological Materials, SIAM Rev., 54, 52, 10.1137/080731785
Kadapa, 2014
Kadapa, 2019, Novel quadratic Bézier triangular and tetrahedral elements using existing mesh generators: Applications to linear nearly incompressible elastostatics and implicit and explicit elastodynamics, Internat. J. Numer. Methods Engrg., 117, 543, 10.1002/nme.5967
Kadapa, 2019, Novel quadratic Bézier triangular and tetrahedral elements using existing mesh generators: Extension to nearly incompressible implicit and explicit elastodynamics in finite strains, Internat. J. Numer. Methods Engrg., 119, 75, 10.1002/nme.6042
Kadapa, 2020, A novel semi-implicit scheme for elastodynamics and wave propagation in nearly and truly incompressible solids, Acta Mech.
Kadapa, 2016, Subdivision based mixed methods for isogeometric analysis of linear and nonlinear nearly incompressible materials, Comput. Methods Appl. Mech. Engrg., 305, 241, 10.1016/j.cma.2016.03.013
Kadapa, 2020, A linearized consistent mixed displacement-pressure formulation for hyperelasticity, Mech. Adv. Mater. Struct., 10.1080/15376494.2020.1762952
Kadapa, 2020, A robust and computationally efficient finite element framework for coupled electromechanics, Comput. Methods Appl. Mech. Engrg., 372, 10.1016/j.cma.2020.113443
Kempaiah, 2014, From nature to synthetic systems: shape transformation in soft materials, J. Mater. Chem. B, 2, 2357, 10.1039/C3TB21462A
Khang, 2009, Mechanical buckling: Mechanics, metrology, and stretchable electronics, Adv. Funct. Mater., 19, 1526, 10.1002/adfm.200801065
Kourounis, 2018, Towards the next generation of multiperiod optimal power flow solvers, IEEE Trans. Power Syst., 99, 1
Kuhl, 2014, Growing matter: A review of growth in living systems, J. Mech. Behav. Biomed. Mater., 29, 529, 10.1016/j.jmbbm.2013.10.009
Kuhl, 2003, Computational modeling of growth. A critical review, a classification of concepts and two new consistent approaches, Comput. Mech., 32, 71, 10.1007/s00466-003-0463-y
Lanir, 2015, Mechanistic micro-structural theory of soft tissues growth and remodeling: tissues with unidirectional fibers, Biomech. Model. Mechanobiol., 14, 245, 10.1007/s10237-014-0600-x
Lessinnes, 2017, Morphoelastic rods Part II: Growing birods, J. Mech. Phys. Solids, 100, 147, 10.1016/j.jmps.2015.07.008
Li, 2012, Mechanics of morphological instabilities and surface wrinkling in soft materials: A review, Soft Matter, 8, 5728, 10.1039/c2sm00011c
Li, 2013, Tissue-growth model for the swelling analysis of core–shell hydrogels, Soft Matter, 11, 117, 10.1080/1539445X.2011.584603
Liu, 2016, 2D or not 2D: shape-programming polymer sheets, Prog. Polym. Sci., 52, 79, 10.1016/j.progpolymsci.2015.09.001
Lubarda, 2002, On the mechanics of solids with a growing mass, Int. J. Solids Struct., 39, 4627, 10.1016/S0020-7683(02)00352-9
Menzel, 2012, Frontiers in growth and remodeling, Mech. Res. Commun., 42, 1, 10.1016/j.mechrescom.2012.02.007
Mora, 2006, Buckling of swelling gels, Eur. Phys. J. E, 20, 119, 10.1140/epje/i2005-10124-5
Moulton, 2011, Circumferential buckling instability of a growing cylindrical tube, J. Mech. Phys. Solids, 59, 525, 10.1016/j.jmps.2011.01.005
Moulton, 2013, Morphoelastic rods. Part I: A single growing elastic rod, J. Mech. Phys. Solids, 61, 398, 10.1016/j.jmps.2012.09.017
Moulton, 2020, Morphoelastic rods III: Differential growth and curvature generation in elastic filaments, J. Mech. Phys. Solids, 142, 10.1016/j.jmps.2020.104022
Nash, 2000, Computational mechanics of the heart, J. Elasticity, 61, 113, 10.1023/A:1011084330767
Nath, 2003, Genetic control of surface curvature, Science, 299, 1404, 10.1126/science.1079354
Ogden, 1997
Pezzulla, 2016, Geometry and mechanics of thin growing bilayers, Soft Matter, 12, 4435, 10.1039/C6SM00246C
Rausch, 2013, On the effect of prestrain and residual stress in thin biological membranes, J. Mech. Phys. Solids, 61, 1955, 10.1016/j.jmps.2013.04.005
Raybaud, 2011, Development and dysgenesis of the cerebral cortex: malformations of cortical development, Neuroimaging Clin. N. Am., 21, 483, 10.1016/j.nic.2011.05.014
Reese, 1998, A theory of finite viscoelasticity and numerical aspects, Int. J. Solids Struct., 35, 3455, 10.1016/S0020-7683(97)00217-5
Rodriguez, 1994, Stress-dependent finite growth in soft elastic tissue, J. Biomech., 27, 455, 10.1016/0021-9290(94)90021-3
Skalak, 1996, Compatibility and the genesis of residual stress by volumetric growth, J. Math. Biol., 34, 889, 10.1007/BF01834825
Stafford, 2004, A buckling-based metrology for measuring the elastic moduli of polymeric thin films, Nature Mater., 3, 545, 10.1038/nmat1175
Steinmann, 2012, Hyperelastic models for rubber-like materials: Consistent tangent operators and suitability of Treloar’s data, Arch. Appl. Mech., 82, 1183, 10.1007/s00419-012-0610-z
Sultan, 2008, The buckling of a swollen thin gel layer bound to a compliant substrate, J. Appl. Mech., 75, 10.1115/1.2936922
Terwagne, 2014, Smart morphable surfaces for aerodynamic drag control, Adv. Mater., 26, 6608, 10.1002/adma.201401403
Wang, 2016, On a consistent finite-strain plate theory for incompressible hyperelastic materials, Int. J. Solids Struct., 78–79, 101, 10.1016/j.ijsolstr.2015.09.013
Wang, 2018, On a consistent finite-strain plate theory of growth, J. Mech. Phys. Solids, 111, 184, 10.1016/j.jmps.2017.10.017
Wang, 2018, Stress-free bending of a neo-Hookean plate induced by growth: Exact solution and experiments, Int. J. Non-Linear Mech., 106, 280, 10.1016/j.ijnonlinmec.2018.05.017
Wang, 2019, Shape-programming of hyperelastic plates through differential growth: An analytical approach, Soft Matter, 15, 2391, 10.1039/C9SM00160C
Wang, 2020, High-order NURBS elements based isogeometric formulation for swellable soft materials, Comput. Methods Appl. Mech. Engrg., 363, 10.1016/j.cma.2020.112901
Xu, 2020, Water affects morphogenesis of growing aquatic plant leaves, Phys. Rev. Lett., 124, 10.1103/PhysRevLett.124.038003
Xu, 2015, Instabilities in thin films on hyperelastic substrates by 3D finite elements, Int. J. Solids Struct., 69-70, 71, 10.1016/j.ijsolstr.2015.06.007
Xu, 2014, 3D finite element modeling for instabilities in thin films on soft substrates, Int. J. Solids Struct., 51, 3619, 10.1016/j.ijsolstr.2014.06.023
Yuk, 2017, Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water, Nature Commun., 8, 14230, 10.1038/ncomms14230
Zhao, 2015, The primary bilayer ruga-phase diagram I: Localizations in ruga evolution, Extreme Mech. Lett., 4, 76, 10.1016/j.eml.2015.04.006
Zhou, 2018, Surface instability of bilayer hydrogel subjected to both compression and solvent absorption, Polymers, 10, 624, 10.3390/polym10060624
Zienkiewicz, 2014