On the adjacent vertex-distinguishing total chromatic numbers of the graphs with Δ (G) = 3

Springer Science and Business Media LLC - Tập 14 Số 1 - Trang 87-109 - 2007
Haiying Wang1
1Department of Mathematics, Beijing Institute of Technology, Beijing, P. R. China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Balister PN, Riordan OM, Schelp RH (2003) Vertex distinguishing edge colorings of graphs. J Graph Theory 42:95–109

Balister PN, Bollobas B, Schelp RH (2002) Vertex distinguishing colorings of graphs with Δ(G) = 2. Discrete Math 252:17–29

Burns AC, Schelp RH (1997) Vertex-distinguishing proper edge-coloring. J Graph Theory 21:73–82

Wang H, The adjacent vertex-distinguishing total chromatic number of 1−tree, accepted by Ars Combinatoria

Wang Z, Wang L, Wang J, Lu X, Zhang Z (2004) On adjacent vertex-distinguishing total coloring of θ−graph. J Lanzhou Jiaotong Univ (Nat Sci) 23(3):13–15

Zhang Z, Liu L, Wang J (2002) Adjacent strong edge coloring of graphs. Appl Math Lett 15:623–626

Zhang D, Zhang Z (2000) The adjacent vertex-distinguishing edge coloring of 1−tree. J Math Res Exposit 20:299–305

Zhang Z, Chen X, Li J, Yao B, Lu X, Wang J (2004) On the adjacent vertex-distinguishing total coloring of graphs. Sci China Ser A Math 34:574–583

Zhang Z, Yao B, Chen X, Wang W (2004) A note on the upper bound of adjacent vertex-distinguishing chromatic number of graphs. J Lanzhou Jiaotong Univ (Nat Sci) 23(6):143–145