On the absence of stability of bases in some Fréchet spaces

Analysis Mathematica - Tập 46 - Trang 761-768 - 2020
A. Goncharov1
1Department of Mathematics, Bilkent University, Ankara, Turkey

Tóm tắt

We show that, for each compact subset of the real line of infinite cardinality with an isolated point, the space of Whitney jets on the set does not possess a basis consisting only of polynomials. On the other hand, polynomials are dense in any Whitney space. Thus, there are no general results about stability of bases in Fréchet spaces.

Tài liệu tham khảo

M. Arsove, The Paley-Wiener theorem in metric linear spaces, Pacific J. Math., 10 (1960), 365–379. R. P. Boas, Jr., Expansions of analytic functions, Trans. Amer. Math. Soc., 48 (1940), 467–487. M. M. Dragilev, The regular convergence of basis expansions of analytic functions, Naun. Dokl. Vys. koly Fiz.-Mat. Nauki, 4 (1958), 27–32 (in Russian). A. Goncharov, Bases in the spaces of C∞-functions on Cantor-type sets, Constr. Approx., 23 (2006), 351–360. A. P. Goncharov, Interpolating basis in the space C∞[−1, 1]d, in: Constructive Theory of Function, Prof. M. Drinov Acad. Publ. House (Sofia, 2014), pp. 97–100. K. Kopotun, Simultaneous approximation by algebraic polynomials, Constr. Approx., 12 (1996), 67–94. G. Köthe, Topological Vector Spaces. I, Springer-Verlag (New York, 1969). M. Krein, D. Milman and M. Rutman, A note on basis in Banach space, Comm. Inst. Sci. Math. Méc. Univ. Kharkoff, 16 (1940), 106–110 (in Russian). Yu. I. Lyubich, Linear Functional Analysis. Functional analysis. I, Encyclopaedia Math. Sci., vol. 19, Springer (Berlin, 1992). J. T. Marti, Introduction to the Theory of Bases, Springer-Verlag (New York, 1969). R. Meise and D. Vogt, Introduction to Functional Analysis, Clarendon Press (Oxford, 1997). B. S. Mitjagin, Approximate dimension and bases in nuclear spaces, Uspehi Mat. Nauk, 16 (1961), 63–132 (in Russian). J. Obermaier, A continuous function space with a Faber basis, J. Approx. Theory, 125 (2003), 303–312. R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Reprint of the 1934 original, Amer. Math. Soc. Coll. Publ., vol. 19 (1987). R. Taylor and V. Totik, Lebesgue constants for Leja points, IMA J. Numer. Anal., 30 (2010), 462–486. H. Whitney, Differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 369–387.