On the Weyl decomposition of the space $$\mathop D\limits^ \circ \left( \Omega \right)$$ and orthogonal projections of Navier-Stokes equationsand orthogonal projections of Navier-Stokes equations

Springer Science and Business Media LLC - Tập 38 - Trang 133-143 - 1992
J. Appell1, O. Jong Guk2, P. P. Zabrejko3
1Department of Mathematics, University of Würzburg, Würzburg, Germany
2Department of Mathematics, University of Pjöngjang, Pjöngjang, Korea
3Department of Mathematics, Belgos-University, Minsk, Russia

Tóm tắt

The orthogonal decompositions $$\mathop D\limits^ \circ = H \oplus P \oplus F, H \oplus P = H$$ , and $$P \oplus F = F$$ are established, where $$\mathop D\limits^ \circ $$ is an energetic Hilbert space over some open (not necessarily bounded) domain with piecewise smooth boundary in two- or three-dimensional Euclidean space. An intrinsic characterization of the subspacesH, P andF is given as well.

Tài liệu tham khảo

R. Adams,Sobolev Spaces, Academic Press, New York (1976). J. Appell—O. Jong Guk—A Kufner—P. P. Zabrejko,Growth properties of Sobolev space functions over unbounded domains, Math. Slovaka (to appear). E. B. Bykhowskij—N. V. Smirnov,On orthogonal decompositions of quadraticintegrable vector functions on a given domain (Russian), Trudy Mat. Inst. Steklov.,59 (1960), pp. 5–36. R. Dautray—J. L. Lions,Analyse mathématique et calcul, numérique pour les sciences et les techniques, Masson, Paris (1984). D. Fujiwara—H. Marimoto,An L r,theorem of the Helmholts decomposition of vector fields, J. Fac. Sci. Univ. Tokyo,24 (1977), pp. 685–700. J. G. Heywood,On uniqueness questions in the theory of viscous flow, Acta Math.,136 (1976), pp. 61–102. O Jong Guk On the orthogonal projection method in the space\(\mathop D\limits^ \circ \left( \Omega \right)\) and Navier-Stokes equations, Su-hak Kwa Mul-li Math. Phys.,2 (1982), pp. 16–26. A. Kufner—O. John—S. Fučik Function Spaces, Noordhoff, Leyden (1977). O. A. Ladyzhenskaja,The Mathematical Theory of Viscous Incompressible Flows (Russian), Nauka, Moskow (1960) (Engl. transl.: Gordon & Breach, New York (1969)). O. A. Ladyzhenskaja—V. A. Solonnikov On some problems of vector analysis and generalized boundary value problems for Navier-Stokes equations (Russian), Nauchn. Sapiski Sem. Leningr. Otdel. Mat. Inst.,59, (1976), pp. 81–116. S. L. Sobolev,Some applications of functional analysis to mathematical physics (Russian), Izd. Leningr. Univ. Leningrad (1950) (Engl. transl.: AMS Transl. Math. Monogr., Providence (1963)). R. Temam,Navier-Stokes Equations: Theory and Numerical Analysis, North Holland, Amsterdam (1977). H. Weyl,The method of orthogonal projection in potential theory, Duke Math. J.,7 (1941), pp. 411–444.