On the Weinstein–Wigner transform and Weinstein–Weyl transform

A. Saoudi1
1College of Science, Northern Border University, Arar, P.O. Box 1631, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Brelot, M.: Equation de Weinstein et potentiels de Marcel Riesz. In: Séminaire de Théorie du Potentiel Paris, no. 3, pp. 18–38. Springer, (1978)

Dachraoui, A.: Weyl–Bessel transforms. J. Comput. Appl. Math. 133(1–2), 263–276 (2001)

Dachraoui, A.: Weyl transforms associated with Laguerre functions. J. Comput. Appl. Math. 153(1–2), 151–162 (2003)

Dachraoui, A.: Weyl–Dunkl transforms. Glob. J. Pure Appl. Math. 2(3), 206–225 (2006)

Dasgupta, A., Wong, M.W.: Weyl transforms for H-type groups. J. Pseudo Differ. Oper. Appl. 6(1), 11–19 (2015)

de Gosson, M.: A transformation property of the wigner distribution under Hamiltonian symplectomorphisms. J. Pseudo Differ. Oper. Appl. 2(1), 91–99 (2011)

Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Wiley, Hoboken (1984)

Kim, M., Ben-Benjamin, J., Cohen, L.: Inverse Weyl transform/operator. J. Pseudo Differ. Oper. Appl. 8(4), 661–678 (2017)

Mehrez, K.: Paley–Wiener theorem for the Weinstein transform and applications. Integral Transforms Special Funct. 28(8), 616–628 (2017)

Mejjaoli, H., Salem, A.O.A.: New results on the continuous Weinstein wavelet transform. J. Inequal. Appl. 2017(1), 270 (2017)

Mejjaoli, H., Salhi, M.: Uncertainty principles for the Weinstein transform. Czechoslov. Math. J. 61(4), 941–974 (2011)

Molahajloo, S., Wong, M.W.: Hierarchical Weyl transforms and the heat semigroup of the hierarchical twisted Laplacian. J. Pseudo Differ. Oper. Appl. 1(1), 35–53 (2010)

Nahia, Z.B., Salem, N.B.: On a mean value property associated with the Weinstein operator. In: Proceedings of the International Conference on Potential Theory held in Kouty, Czech Republic (ICPT’94), pp. 243–253 (1996)

Nahia, Z.B., Salem, N.B.: Spherical harmonics and applications associated with the Weinstein operator. In: Proceedings of the International Conference on Potential Theory—ICPT ’94, Kouty, Czech Republic

Radha, R., Kumar, N.S.: Weyl transform and Weyl multipliers associated with locally compact abelian groups. J. Pseudo Differ. Oper. Appl. 9(2), 229–245 (2018)

Salem, N.B., Nasr, A.R.: Heisenberg-type inequalities for the Weinstein operator. Integral Transforms Special Funct. 26(9), 700–718 (2015)

Saoudi, A.: A variation of the $${L}^p$$ uncertainty principles for the Weinstein transform. arXiv preprint arXiv:1810.04484 (2018)

Saoudi, A.: Calderón’s reproducing formulas for the weinstein $${L}^2$$-multiplier operators. Acceoted Asian Eur. J. Math. (2019). https://doi.org/10.1142/S1793557121500030

Saoudi, A., Kallel, I.A.: $$ L^2 $$-uncertainty principle for the Weinstein-Multiplier Operators. Int. J. Anal. Appl. 17(1), 64–75 (2019)

Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83(2), 482–492 (1956)

Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 10, p. 297. Princeton University Press, Princeton (1971)

Weinstein, A.: Singular partial differential equations and their applications. Fluid Dyn. Appl. Math. 67, 29–49 (1962)

Weyl, H.: The Theory of Groups and Quantum Mechanics. Courier Corporation, North Chelmsford (1950)

Wong, M.W.: The Weyl Transforms. Springer, Berlin (1998)