Về những cách thực hiện khác nhau của đại diện cơ bản của An−1(1) và tổ hợp của các phân hoạch

Séverine Leidwanger1
1Institut de Mathématiques de Jussieu, Université Denis Diderot, Paris cedex, France

Tóm tắt

Đại số Lie vô hạn chiều ŝl n = A n−1 (1) có thể được hiện thực hóa theo nhiều cách khác nhau dưới dạng đại số của các toán tử vi phân. Mục tiêu của ghi chú này là chỉ ra rằng các toán tử xen giữa các hiện thực hóa của ŝl n tương ứng với tất cả các phân hoạch của n có thể được mô tả rất đơn giản bằng cách sử dụng các cấu trúc tổ hợp.

Từ khóa

#đại số Lie #toán tử vi phân #phân hoạch #tổ hợp

Tài liệu tham khảo

I.B. Frenkel and V.G. Kac, “Basic representations of affine Lie algebras and dual resonance models,” Invent. Math. 62 (1980), 23-66.

G. James and A. Kerber, The Representation Theory of the Symmetric Group, Addison Wesley, Reading, MA, 1981.

V.G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge, UK, 1990.

F. ten Kroode and J. Van de Leur, “Bosonic and fermionic realizations of the affine algebra gln,” Commun. Math. Phys. 137 (1991), 67-107.

V.G. Kac and D.H. Peterson, “112 Constructions of the basic representation of the loop group of E 8,” Proceedings of the Conference “Anomalies, geometry, topology” Argonne, 1985. World Scientific, Singapore, 1985, pp. 276-298.

V.G. Kac, D.A. Kazhdan, J. Lepowsky, and R.L. Wilson, “Realization of the basic representations of the euclidean Lie algebras,” Adv. Math. 42 (1981), 83-112.

V.G. Kac and A.K. Raina, “Bombay lectures on highest weight representations of infinite dimensional Lie algebras,” World Scientific, Singapore, 1987.

S. Leidwanger, “Basic representations of A -1/(1) n and A (2)2n and the combinatorics of partitions,” Adv. Math. 141 (1999), 119-154.

I.G. Macdonald, Symmetric Functions and Hall polynomials, 2nd ed., Oxford, UK, 1995.

T. Muir, A Treatise on the Theory of Determinants, Macmillan, London, 1882.

J.B. Olsson, “Combinatorics and Representations of Finite Groups,” Vorlesungen aus dem Fachbereich Mathematik der Universitat GH Essen Heft 20 (1993).