On the Thermal Hysteresis Behavior of Encapsulated Latent Heat Storage with Various Geometry

Farooq Hassan Ali1, Hameed Kadhem Hamzah1, Tahssen Alhattab2, Hayder Abdul-Mohsin Hashim3, Seyed Soheil Mousavi Ajarostaghi4
1College of Engineering, Mechanical Engineering Department, University of Babylon, Babylon City, Hilla, Iraq
2College of Engineering, Chemical Engineering Department, University of Babylon, Babylon City, Hilla, Iraq
3Oil Distribution Company, Babylon City, Hilla, Iraq
4Mechanical Engineering Department, Université de Sherbrooke, Sherbrooke, Canada

Tóm tắt

In this work, thermal hysteresis of PCM inside different encapsulated configurations (circle, triangle and square) during melting and solidification processes are investigated numerically. Charging and discharging of a latent heat storage during unsteady complex phenomena was simulated numerically using the finite element method. The results indicate that the time elapsed was minimum for triangular encapsulated configuration and maximum time for circular encapsulated configuration for both the melting and solidification process. The time of thermal hysteresis of the melting and solidification process decreased with the increasing Rayleigh number for all encapsulated configurations. Circular encapsulated configuration has higher latent heat storage than triangular and square encapsulated configurations, while circular encapsulated configuration has a minimum.

Tài liệu tham khảo

Afsharpanah, F., Izadi, M., Hamedani, F.A., Ajarostaghi, S.S.M., Yaïci, W.: Solidification of nano-enhanced PCM-porous composites in a cylindrical cold thermal energy storage enclosure. Case Stud. Therm. Eng. 39, 102421 (2022). https://doi.org/10.1016/j.csite.2022.102421 Afsharpanah, F., Cheraghian, G., Akbarzadeh Hamedani, F., Shokri, E., Mousavi Ajarostaghi, S.S.: Utilization of carbon-based nanomaterials and plate-fin networks in a cold PCM container with application in air conditioning of buildings. Nanomaterials 12(11), 1927 (2022). https://doi.org/10.3390/nano12111927 Ajarostaghi, S.S.M., Amirsoleymani, A., Arıcı, M., Dolati, A., Amiri, L.: Thermal energy storage with PCMs: A comprehensive study of horizontal shell and multi-tube systems with finned design. J. Energy Storage 72, 108762 (2023). https://doi.org/10.1016/j.est.2023.108762 Ajarostaghi, S.S.M., Poncet, S., Sedighi, K., Amiri, L.: Solidification analysis in an ice-on-coil ice storage system: experimental and numerical approaches. J. Energy Storage 65, 107291 (2023) Akeiber, H., Nejat, P., Majid, M.Z.A., Wahid, M.A., Jomehzadeh, F., Famileh, I.Z., Zaki, S.A., et al.: A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew. Sustain. Energy Rev. 60, 1470–1497 (2016) Alva, G., Lin, Y., Liu, L., Fang, G.: Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy Build. 144, 276–294 (2017) Andrássy, Z., Szantho, Z.: Thermal behaviour of materials in interrupted phase change. J. Therm. Anal. Calorim. 138(6), 3915–3924 (2019) Aydin, D., Casey, S.P., Riffat, S.: The latest advancements on thermochemical heat storage systems. Renew. Sustain. Energy Rev. 41, 356–367 (2015) Barz, T., Emhofer, J., Marx, K., Zsembinszki, G., Cabeza, L.F.: Phenomenological modelling of phase transitions with hysteresis in solid/liquid PCM. J. Build. Perform. Simul. 12(6), 770–788 (2019) Belman-Flores, J.M., Barroso-Maldonado, J.M., Rodríguez-Muñoz, A.P., Camacho-Vázquez, G.: Enhancements in domestic refrigeration, approaching a sustainable refrigerator: a review. Renew. Sustain. Energy Rev. 51, 955–968 (2015) Buonomo, B., Manca, O., Ercole, D., & Nardini, S. (2016). Numerical simulation of thermal energy storage with phase change material and aluminum foam. In: CLIMA 2016: proceedings of the 12th REHVA World Congress: volume 4. Department of Civil Engineering, Aalborg University, Denmark. https://vbn.aau.dk/ws/portalfiles/portal/233718248/paper_676.pdf Castell, A., Solé, C.: An overview on design methodologies for liquid–solid PCM storage systems. Renew. Sustain. Energy Rev. 52, 289–307 (2015) Cheng, W.L., Liu, N., Wu, W.F.: Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity. Appl. Therm. Eng. 36, 345–352 (2012) Delgado, M., Lázaro, A., Mazo, J., Zalba, B.: Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications. Renew. Sustain. Energy Rev. 16(1), 253–273 (2012) Dhaidan, N.S., Khodadadi, J.M.: Melting and convection of phase change materials in different shape containers: a review. Renew. Sustain. Energy Rev. 43, 449–477 (2015) Fang, G., Tang, F., Cao, L.: Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renew. Sustain. Energy Rev. 40, 237–259 (2014) Ghalambaz, M., Doostani, A., Chamkha, A.J., Ismael, M.A.: Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int. J. Mech. Sci. 134, 85–97 (2017) Goia, F., Chaudhary, G., Fantucci, S.: Modelling and experimental validation of an algorithm for simulation of hysteresis effects in phase change materials for building components. Energy Build. 174, 54–67 (2018) Gowreesunker, B.L., Tassou, S.A., Kolokotroni, M.: Improved simulation of phase change processes in applications where conduction is the dominant heat transfer mode. Energy Build. 47, 353–359 (2012) Gowreesunker, B.L., Tassou, S.A.: Effectiveness of CFD simulation for the performance prediction of phase change building boards in the thermal environment control of indoor spaces. Build. Environ. 59, 612–625 (2013) Jacob, R., Bruno, F.: Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew. Sustain. Energy Rev. 48, 79–87 (2015) Javadi, H., Urchueguia, J.F., Mousavi Ajarostaghi, S.S., Badenes, B.: Numerical study on the thermal performance of a single U-tube borehole heat exchanger using nano-enhanced phase change materials. Energies 13(19), 5156 (2020). https://doi.org/10.3390/en13195156 Karthikeyan, M., Ramachandran, T.: Review of thermal energy storage of micro-and nanoencapsulated phase change materials. Mater. Res. Innov. 18(7), 541–554 (2014) Kuznik, F., Virgone, J.: Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling. Energy Build. 41(5), 561–570 (2009) Liu, S., Li, Y., Zhang, Y.: Review on heat transfer mechanisms and characteristics in encapsulated PCMs. Heat Transf. Eng. 36(10), 880–901 (2015) Ma, et al. Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook. Renew. Sustain. Energy Rev. 43, 1273–1284 (2015) Masoumpour-Samakoush, M., Miansari, M., Ajarostaghi, S.S.M., Arıcı, M.: Impact of innovative fin combination of triangular and rectangular fins on melting process of phase change material in a cavity. J. Energy Storage 45, 103545 (2022). https://doi.org/10.1016/j.est.2021.103545 Moreles, E., Huelsz, G., Barrios, G.: Hysteresis effects on the thermal performance of building envelope PCM-walls. Build. Simul. 11(3), 519–531 (2018) Mourad, A., Qasem, N.A., Abderrahmane, A., Marzouki, R., Guedri, K., Younis, O., Botmart, T., et al.: Numerical study on n-octadecane PCM melting process inside a pear-shaped finned container. Case Stud. Therm. Eng. 38, 102328 (2022). https://doi.org/10.1016/j.csite.2022.102328 Olfian, H., Ajarostaghi, S.S.M., Farhadi, M., Ramiar, A.: Melting and solidification processes of phase change material in evacuated tube solar collector with U-shaped spirally corrugated tube. Appl. Therm. Eng. 182, 116149 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116149 Olfian, H., Ajarostaghi, S.S.M., Ebrahimnataj, M., Farhadi, M., Arıcı, M.: On the thermal performance of evacuated tube solar collector integrated with phase change material. Sustain. Energy Technol. Assess. 53, 102437 (2022). https://doi.org/10.1016/j.seta.2022.102437 Pakzad, K., Mousavi Ajarostaghi, S.S., Sedighi, K.: Numerical simulation of solidification process in an ice-on-coil ice storage system with serpentine tubes. SN Appl. Sci. 1, 1–12 (2019). https://doi.org/10.1007/s42452-019-1316-4 Patel, J., Rathod, M.: Numerical investigation on the phase change rocess of different shape macro encapsulated PCM. Int. J. Eng. Technol. 7, 567 (2018) Peng, G., Dou, G., Yahao, H., Sun, Y., Chen, Z.: Phase change material (PCM) microcapsules for thermal energy storage. Adv. Polym. Technol. 2020, 1–20 (2020) Pérez-Masiá, R., López-Rubio, A., Lagarón, J.M.: Development of zein-based heat-management structures for smart food packaging. Food Hydrocoll. 30(1), 182–191 (2013) Reddy, J.N.: Introduction to the Finite Element Method. McGraw-Hill Education (2019) Seddegh, S., Wang, X., Henderson, A.D., Xing, Z.: Solar domestic hot water systems using latent heat energy storage medium: a review. Renew. Sustain. Energy Rev. 49, 517–533 (2015) Shalaby, S.M., Bek, M.A., El-Sebaii, A.A.: Solar dryers with PCM as energy storage medium: a review. Renew. Sustain. Energy Rev. 33, 110–116 (2014) Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13(2), 318–345 (2009) Sharma, S.D., Sagara, K.: Latent heat storage materials and systems: a review. Int. J. Green Energy 2(1), 1–56 (2005) Sheikholeslami, M.: Finite element method for PCM solidification in existence of CuO nanoparticles. J. Mol. Liq. 265(347–355), 26 (2018) Singh, R., Sadeghi, S., Shabani, B.: Thermal conductivity enhancement of phase change materials for low-temperature thermal energy storage applications. Energies 12(1), 75 (2019) Tan, F.L., Hosseinizadeh, S.F., Khodadadi, J.M., Fan, L.: Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int. J. Heat Mass Transf. 52(15–16), 3464–3472 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.043 Teggar, M., Ajarostaghi, S.S., Yıldız, Ç., Arıcı, M., Ismail, K.A., Niyas, H., Khalid, M., et al.: Performance enhancement of latent heat storage systems by using extended surfaces and porous materials: a state-of-the-art review. J. Energy Storage 44, 103340 (2021). https://doi.org/10.1016/j.est.2021.103340 Teggar, M., Arıcı, M., Mert, M.S., Mousavi Ajarostaghi, S.S., Niyas, H., Tunçbilek, E., Mezaache, E.H., et al.: A comprehensive review of micro/nano enhanced phase change materials. J. Therm. Anal. Calorim. 147(6), 3989–4016 (2022). https://doi.org/10.1007/s10973-021-10808-0 Uzan, A.Y., Kozak, Y., Korin, Y., Harary, I., Mehling, H., Ziskind, G.: A novel multi-dimensional model for solidification process with supercooling. Int. J. Heat Mass Transf. 106, 91–102 (2017) Zhou, Z., Zhang, Z., Zuo, J., Huang, K., Zhang, L.: Phase change materials for solar thermal energy storage in residential buildings in cold climate. Renew. Sustain. Energy Rev. 48, 692–703 (2015) Ziskind, G.: Modelling of heat transfer in phase change materials (PCMs) for thermal energy storage systems. In: Advances in Thermal Energy Storage Systems, pp. 307–324. Woodhead Publishing (2015)