On the Theory of Global Attractors and Lyapunov Functionals

Springer Science and Business Media LLC - Tập 21 Số 1 - Trang 127-149 - 2013
Michele Coti Zelati1
1Mathematics Department, Indiana University, Rawles Hall, Bloomington, IN, 47405, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arrieta, J.M., Rodríguez-Bernal, A., Valero, J.: Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16, 2965–2984 (2006)

Aubin, J.-P., Frankowska, H.: Set Valued Analysis. Birkhäuser, Boston (1990)

Ball, J.M.: Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J. Nonlinear Sci. 7, 475–502 (1997)

Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. North-Holland, Amsterdam (1992)

Caraballo, T., Langa, J.A., Melnik, V.S., Valero, J.: Pullback attractors of nonautonomous and stochastic multivalued dynamical systems. Set-Valued Anal. 2, 153–201 (2003)

Caraballo, T., Marín-Rubio, P., Robinson, J.C.: A comparison between two theories for multi-valued semiflows and their asymptotic behaviour. Set-Valued Anal. 11, 297–322 (2003)

Chepyzhov, V.V., M. Conti, Pata, V.: A minimal approach to the theory of global attractors. Discrete Contin. Dyn. Syst. 6, 2079–2088 (2012)

Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. Amer. Math. Soc., Providence (2002)

Chepyzhov, V.V., Vishik, M.I.: Evolution equations and their trajectory attractors. J. Math. Pures Appl. 76, 913–964 (1997)

Conti, M., Pata, V.: Weakly dissipative semilinear equations of viscoelasticity. Commun. Pure Appl. Anal. 4, 705–720 (2005)

Coti Zelati, M., Tone, F.: Multivalued attractors and their approximation: applications to the Navier-Stokes equations. Numer. Math. (2012). doi: 10.1007/s00211-012-0463-y

Coti Zelati, M., Pata, V., Quintanilla, R.: Regular global attractors of type III thermoelastic extensible beams. Chin. Ann. Math. Ser. B 31, 619–630 (2010)

Feireisl, E., Norbury, J.: Some existence, uniqueness and nonuniqueness theorems for solutions of parabolic equations with discontinuous nonlinearities. Proc. R. Soc. Edinb., Sect. A 119, 1–17 (1991)

Gentile, C.B., Simsen, J.: On attractors for multivalued semigroups defined by generalized semiflows. Set-Valued Anal. 16, 105–124 (2008)

Giorgi, C., Pata, V., Vuk, E.: On the extensible viscoelastic beam. Nonlinearity 21, 713–733 (2008)

Hale, J.K.: Asymptotic behavior of dissipative systems. Amer. Math. Soc., Providence (1988)

Haltiner, G.J., Williams, R.T.: Numerical Prediction and Dynamic Meteorology. Wiley, New York (1980)

Kloeden, P.E., Marín-Rubio, P.: Negatively invariant sets and entire trajectories of set-valued dynamical systems. Set-Valued Var. Anal. 19, 43–57 (2011)

Kloeden, P.E., Valero, J.: Attractors of weakly asymptotically compact set-valued dynamical systems. Set-Valued Anal. 13, 381–404 (2005)

Ladyzhenskaya, O.: Attractors for Semigroups and Evolution Equations. Lezioni Lincee, Cambridge University Press, Cambridge (1991)

Lions, J.-L., Temam, R., Wang, S.: New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5, 237–288 (1992)

Melnik, V.S., Valero, J.: On attractors of multivalued semi-flows and differential inclusion. Set-Valued Anal. 6, 83–111 (1998)

Melnik, V.S., Valero, J.: Addendum to: “On attractors of multivalued semiflows and differential inclusions”. Set-Valued Anal. 16, 507–509 (2008)

Pata, V.: Gradient systems of closed operators. Cent. Eur. J. Math. 7, 487–492 (2009)

Pata, V., Zelik, S.: A result on the existence of global attractors for semigroups of closed operators. Commun. Pure Appl. Anal. 6, 481–486 (2007)

Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge (2001)

Rossi, R., Segatti, S., Stefanelli, U.: Attractors for gradient flows of nonconvex functionals and applications. Arch. Ration. Mech. Anal. 187, 91–135 (2008)

Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Springer, New York (2002)

Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997)

Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001)

Valero, J.: Attractors of parabolic equations without uniqueness. J. Dyn. Differ. Equ. 13, 711–744 (2001)