On the Structure of the Bäcklund Transformations for the Relativistic Lattices

Journal of Nonlinear Mathematical Physics - Tập 7 - Trang 34-56 - 2000
Vsevolod E. Adler1
1Ufa Institute of Mathematics, Ufa, Russia

Tóm tắt

The Bäcklund transformations for the relativistic lattices of the Toda type and their discrete analogues can be obtained as the composition of two duality transformations. The condition of invariance under this composition allows to distinguish effectively the integrable cases. Iterations of the Bäcklund transformations can be described in the terms of nonrelativistic lattices of the Toda type. Several multifield generalizations are presented.

Tài liệu tham khảo

Toda M., Theory of nonlinear lattices, Springer-Verlag, 1981. Ruijsenaars S.N.M., Relativistic Toda system, Preprint Stichting Centre for Mathematics and computer Sciences, Amsterdam, 1986. Ruijsenaars S.N.M., Relativistic Toda systems, Comm. Math. Phys., 1990, V.133, 217–247. Yamilov R.I., Classification of Toda type scalar lattices, Proc. NEEDS’93, World Scientific Publ., Singapore, 1993, 423–431. Suris Yu.B., A collection of integrable systems of the Toda type in continuous and discrete time, with 2 X 2 Lax representations, solv-int/9703004. Suris Yu.B., New integrable systems related to the relativistic Toda lattice, J. Phys. A, 1997, V.30, 1745–1761. Suris Yu.B., On some integrable systems related to the Toda lattice, J. Phys. A, 1997, V.30. Hirota R., Nonlinear partial difference equations. II. Discrete-time Toda equation, J. Phys. Soc. Japan, 1977, V.43, 2074–2078. Suris Yu.B., A discrete-time relativistic Toda lattice, J. Phys. A, 1996, V.29, 451–465. Suris Yu.B., Discrete time generalized Toda lattices: complete integrability and relation with relativistic Toda lattices, Phys. Lett. A, 1990, V.145, 113–119. Suris Yu.B., Bi-Hamiltonian structure of the qd algorithm and new discretizations of the Toda lattice, Phys. Lett. A, 1995, V.206, 153–161. Adler V.E. and Shabat A.B., Generalized Legendre transformations, Teor. i Mat. Fiz., 1997, V.112, N 2, 935–948. Adler V.E., Legendre transformations on the triangular lattice, solv-int/9808016, to appear in Funkts. Analiz. Marikhin V.G. and Shabat A.B., Integrable lattices, Teor. i Mat. Fiz., 1999, V.118, N 2, 217–228. Adler V.E. and Shabat A.B., First integrals of the generalized Toda lattices, Teor. i Mat. Fiz., 1998, V.115, N 3, 349–358. Bobenko A., Discrete integrable systems and geometry, Proc. of the Int. Congress of Math. Phys.’97, Brisbane, July 1997. Bobenko A. and Seiler R. (eds.), Discrete integrable geometry and physics, Oxford Univ. Press, 1998. Doliwa A. and Santini P.M., Geometry of discrete curves and lattices and integrable difference equations, in [17]. Sklyanin E.K., On some algebraic structures related to Yang-Baxter equation, Funkts. analiz, 1982, V.16, N 4, 27–34. Ragnisco O. and Santini P.M., A unified algebraic approach to integral and discrete evolution equations, Inverse Problems, 1990, V.6, 441–452. Faddeev L.D. and Takhtajan L.A., Hamiltonian methods in the theory of solitons, Springer-Verlag, 1987. Shabat A.B. and Yamilov R.I., Factorization of nonlinear equations of the Heisenbergmodel type, Preprint BF AN SSSR, Ufa, 1987. Shabat A.B. and Yamilov R.I, Symmetries of nonlinear chains, Leningrad Math. J., 1991, V.2, N 2, 377. Mikhailov A.V. and Shabat A.B., Integrable deformations of the Heisenberg model, Phys. Lett. A, 1986, V.116, N 4, 191–194. Svinolupov S.I., Generalized Schr¨odinger equations and Jordan pairs, Comm. Math. Phys., 1992, V.143, 559–575. Svinolupov S.I. and Yamilov R.I., The multi-field Schrödinger lattices, Phys. Lett. A, 1991, V.160, 548–552. Svinolupov S.I. and Yamilov R.I., Explicit Bäcklund transformations for multifield Schrädinger equations. Jordan generalizations of the Toda chain, Teor. i Mat. Fiz., 1994, V.98, N 2, 207–219. Habibullin I.T., Sokolov V.V. and Yamilov R.I., Multi-component integrable systems and nonassociative structures, Proc. of 1st Int. Workshop on Nonlinear Physics: Theory and Experiment, World Scientific Publ., 1996, 139–168. Adler V.E., Svinolupov S.I. and Yamilov R.I., Multi-component Volterra and Toda type integrable equations, Phys. Lett. A, 1999, V.254, 24–36. Sokolov V.V. and Svinolupov S.I., Deformations of nonassociative algebras and integrable differential equations, Acta Appl. Math., 1995, V.41, 323–339.