On the Stieltjes moment problem on semigroups

Torben Maack Bisgaard1
1Nandrupsvej, Frederiksberg C, Denmark

Tóm tắt

We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters).

Từ khóa


Tài liệu tham khảo

N. I. Akhiezer: The Classical Moment Problem. Oliver and Boyd, Edinburgh, 1965.

C. Berg: Positive definite and related functions on semigroups. In: The Analytical and Topological Theory of Semigroups (K. H. Hofmann, J. D. Lawson and J. S. Pym, eds.). Walter de Gruyter & Co., Berlin, 1990.

C. Berg, J. P.R. Christensen and C.U. Jensen: A remark on the multidimensional moment problem. Math. Ann. 243 (1979), 163–169.

C. Berg, J. P. R. Christensen and P. Ressel: Harmonic Analysis on Semigroups. Springer-Verlag, Berlin, 1984.

T. M. Bisgaard: Extension of characters on *-semigroups. Math. Ann. 282 (1988), 251–258.

T. M. Bisgaard: Separation by characters or positive definite functions. Semigroup Forum 53 (1996), 317–320.

T. M. Bisgaard: Semigroups of moment functions. Ark. Mat. 35 (1997), 127–156.

T. M. Bisgaard: On perfect semigroups. Acta Math. Hung. 79 (1998), 269–294.

T. M. Bisgaard: Extensions of Hamburger's Theorem. Semigroup Forum 57 (1998), 397–429.

T. M. Bisgaard: A method of moments for semigroups S without zero, but satisfying S = S + S. Semigroup Forum 61 (2000), 317–332.

T. M. Bisgaard: Semiperfect countable C-finite semigroups satisfying S = S +S. Math. Ann. 315 (1999), 141–168.

T. M. Bisgaard and P. Ressel: Unique disintegration of arbitrary positive definite functions on *-divisible semigroups. Math. Z. 200 (1989), 511–525.

A. Brøndsted: An Introduction to Convex Polytopes. Springer-Verlag, Berlin, 1983.

A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups. American Mathematical Society, Providence, 1961.

D. Hilbert: Ñber die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32 (1888), 342–350.

W. B. Jones, O. Njåstad and W. J. Thron: Orthogonal Laurent polynomials and the strong Hamburger moment problem. J. Math. Anal. Appl. 98 (1984), 528–554.

S. L. Lauritzen: Extremal Families and Systems of Sufficient Statistics. Springer-Verlag, Berlin, 1988.

A.W. Marshall and I. Olkin: Inequalities: Theory of Majorization and its Applications. Academic Press, New York, 1979. 195

N. Sakakibara: Moment problems on subsemigroups of ℕk 0 and ℤk. Semigroup Forum 45 (1992), 241–248.

K. Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional. Math. Nachr. 88 (1979), 385–390.

T. J. Stieltjes: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Math. 8 (1894), 1–122; 9 (1894), 1-47.