On the Stability of Equilibrium of a Mechanical System with Tracking, Potential, and Small Dissipative Forces

Mechanics of Solids - Tập 53 - Trang 52-59 - 2019
P. S. Krasil’nikov1, A. Yu. Maiorov1
1Moscow Aviation Institute (MAI), Moscow, Russia

Tóm tắt

We consider a holonomic non-conservative mechanical system with two degrees of freedom that simulates the motion of a vane on the elastic bushing of the helicopter’s main or rudder screw in the thrust plane. The system experiences the action of potential, non-conservative positional forces and linear dissipative forces, which describe the effect of internal friction during deformation of the vane and the effect of the external environment. A multiparameter family of stationary solutions of the model is described, and an investigation of Lyapunov’s stability of a trivial solution in the presence of small linear friction forces is carried out. Ziegler’s areas were plotted for different values of the problem parameters.

Tài liệu tham khảo

Euler, L., Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti, 1744. Nikolai, E.L., On stability of straight-line form of equilibrium for compressed and twisted rod, Izv. Leningr. Politekh. Inst. im. M.I. Kalinina, 1928, no. 31, pp. 1–26. Ziegler, H., Die Stabilitätskriterien der Elastomechanik, Ing.-Arch., 1952, vol. 20, no. 1, pp. 49–56. Seiranyan, A.P., Destabilization paradox in problems on nonconservative systems stability, Usp. Mekh., 1990, vol. 13, no. 2, pp. 89–124. Bolotin, V.V., Nekonservativnye zadachi teorii uprugoi ustoichivosti (Nonconservative Problems on Theory of Elastic Stability), Moscow: Fizmatgiz, 1961. Herrmann, G., Stability of equilibrium of elastic systems subjected to nonconservative forces, Appl. Mech. Rev., 1967, vol. 20, pp. 103–108. Merkin, D.R., Vvedenie v teoriyu ustoichivosti dvizheniya (Introduction into Theory of Motion Stability), Moscow: Nauka, 1976. Baikov, A.E. and Krasil’nikov, P.S., The Ziegler effect in a non-conservative mechanical system, J. Appl. Math. Mech. (Engl. Transl.), 2010, vol. 74, no. 1, pp. 51–60. Baikov, A.Ye., A limit cycle in a non-conservative sytem in 1:2 resonance, J. Appl. Math. Mech. (Engl. Transl.), 2011, vol. 75, no. 3, pp. 269–277. Agafonov, S.A., To the problem on nonconservative systems stability, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1986, no. 1, pp. 47–51. Agafonov, S.A., On stability of nonconservative mechanical systems, Dokl. Akad. Nauk, 1992, vol. 322, no. 6, pp. 1040–1042. Lakhadanov, V.M., On the influence of structure of forces on the stability of motion, J. Appl. Math. Mech. (Engl. Transl.), 1974, vol. 38, no. 2, pp. 220–227. Lakhadanov, V.M., On stabilization of potential systems, J. Appl. Math. Mech. (Engl. Transl.), 1975, vol. 39, no. 1, pp. 45–50. Krasil'nikov, P.S. and Amelin, R.N., On effect of equilibrium destabilization of nonconservative system with three degrees of freedom, Vestn. Mosk. Aviats. Inst. im. Sergo Ordzhonikidze, 2013, vol. 20, no. 4, pp. 191–197. Baikov, A.Yu. and Maiorov, A.Yu., On the equilibrium position stability of discrete model of filling hose under the action of reactive force, Rus. J. Nonlinear Dyn., 2015, vol. 11, no. 1, pp. 127–146. Aleksandrov, A.Yu. and Tikhonov, A.A., The way for stabilizing rigid body rotating motion under decreasing dissipation conditions, Vestn. St.-Petersb. Gos. Univ., 2017, vol. 62, no. 4, pp. 633–643. Aleksandrov, A.Yu., Aleksandrova, E.B., and Tikhonov, A.A., Monoaxial attitude stabilization of a rigid body under vanishing restoring torque, Nonlinear Dyn. Syst. Theory, 2018, vol. 18, no. 1, pp. 12–21. Kirillov, O.N., Nonconservative Stability Problems of Modern Physics, Berlin, Boston: Walter de Gruyter, 2013. Nikolaev, E.I. and Pantyukhin, K.N., Dynamical stability of a helicopter under bearing rotor spinning-up on the earth by considering blade elasticity, Vestn. Mosk. Aviats. Inst. im. Sergo Ordzhonikidze, 2016, vol. 23, no. 3, pp. 112–120. Krasil’nikov, P.S. and Tkhai, V.N., Reversible systems. Stability at 1: 1 resonance, J. Appl. Math. Mech. (Engl. Transl.), 1992, vol. 56, no. 4, pp. 475–484. Faddeev, D.K., Lektsii po algebre. Uchebnoe posobie dlya vuzov (Lectures on Algebra. Student’s Book for Institutions of Higher Education), Moscow: Nauka, 1984.