On the Spectrum, the Growth, and the Diameter of a Graph

Journal of Combinatorial Theory, Series B - Tập 76 - Trang 1-21 - 1999
N. Hajaj1
1Institute of Mathematics, Hebrew University, Jerusalem, Israel

Tài liệu tham khảo

Alon, 1985, λ1, J. Combin. Theory Ser. B, 38, 73, 10.1016/0095-8956(85)90092-9 Brouwer, 1989 Biggs, 1993 Chung, 1994, An upper bound on the diameter of a graph from eigenvalues associated with its Laplacian, SIAM J. Discrete Math., 7, 443, 10.1137/S0895480191217776 Chung, 1989, Diameters and eigenvalues, J. Amer. Math. Soc., 2, 187, 10.1090/S0894-0347-1989-0965008-X Hoffman, 1963, On the polynomial of a graph, Amer. Math. Monthly, 70, 30, 10.2307/2312780 Gerl, 1986, Simple random walks on trees, European J. Combin., 7, 321, 10.1016/S0195-6698(86)80005-1 Lubotzky, 1988, Ramanujan graphs, Combinatorica, 8, 261, 10.1007/BF02126799 Mohar, 1989, A survey on spectra of infinite graphs, Bull. London Math. Soc., 21, 209, 10.1112/blms/21.3.209