On the Spectrum of the Schrödinger Operator with Periodic Surface Potential

Letters in Mathematical Physics - Tập 52 - Trang 197-209 - 2000
Ayham Chahrour1
1Institut de Mathématiques de Jussieu, CNRS UMR 7586, Physique mathématique et Géométrie, Université Paris 7-Denis Diderot, U.F.R. de Mathématiques, Paris Cedex 05, France

Tóm tắt

We consider a discrete Schrödinger operator H=−Δ+V acting in l 2( $$\mathbb{Z}$$ d ), with periodic potential V supported by the subspace ‘surface’ {0}× $$\mathbb{Z}$$ d 2. We prove that the spectrum of H is purely absolutely continuous, and that surface waves oscillate in the longitudinal directions to the ‘surface’. We also find an explicit formula for the generalized spectral shift function introduced by the author in Helv. Phys. Acta. 72 (1999), 93–122.

Tài liệu tham khảo

Amrein, W. O., Boutet de Monvel, A. and Georgescu, V.: C0-groups, Commutator Methods and Spectral Theory of N-body Hamiltonians, Progr. in Math. 135, Birkhauser-Verlag, Basel, 1996. Boutet de Monvel, A. and Surkova, A.: Localisation des états de surface pour une classe d'opérateur de Schroödinger discrets à potentiels de surface quasi-périodiques, Helv. Phys. Acta. 71 (1998), 459–490. Birman, M. S. and Yafaev, D. R.: The spectral shift function. The work of M. G. Krein and its further development, St. Petersburg Math. J. 4(5) (1993). Chahrour, A.: Sur la densitéintégrée d'états surfacique et la fonction généralisée de déplacement spectral pour un potentiel surfacique ergodique, Helv. Phys. Acta. 72 (1999), 93–122. Chahrour, A. and Sahbani, J.: On the spectral and scattering theory of the Schroödinger operator with surface potential, to appear in Rev. Math. Phys. Davies, E. and Simon, B.: Scattering theory for systems with different spatial asymptotics on the left and right, Comm. Math. Phys. 63 (1978), 277–301. Englisch, H., Schder, M. and Seba, P.: The free Laplacien with attractive boundry con ditions, Ann. Inst. H. Poincaré Phys. Théor. 46(4) (1987), 373–382. Jakšsic, V., Molchanov, S. and Pastur, L.: On the propagation properties of surface waves, In: Wave Propagation in Complex Media (Minneapolis, MN, 1994), IMA Vol. Math. Appl. 96, Springer, New York, 1998, pp. 143–154. Jakšsic, V. and Molchanov, S.: On the surface spectrum in dimension two, Helv. Phys. Acta. 71 (1999). Jakšsic, V. and Molchanov, S.: Localization of the surface spectra, to appear in Comm. Math. Phys. Jakšsic, V. and Molchanov, S.: On the spectrum of the surface Maryland model, Lett. Math. Phys. 45(3) (1998), 189–193. Jakšsic, V. and Last, Y.: Corrugated surfaces and a.c. spectrum, Preprint. Kato, T.: Perturbation Theory for Linear Operators, Springer-Verlag, Heidelberg, 1966. Khoruzhenko, B. and Pastur, L.: The localization of surface states: an exactly solvable model, Phys. Rep. 288 (1997), 109–126. Krein, M. G.: On perturbation determinant and trace formula for unitary selfadjoint operators, Soviet. Mat. Dokl. 3 (1962). Lifshits, I. M.: On a problem in perturbation theory, UspekhiMat. Nauk 7(1) (47) (1952), 171–180. Pastur, L. and Figotin, A.: Spectra of Random and Almost Periodic Operators, Springer-Verlag, Heidelberg, 1992. Reed, M. and Simon, B.: Analysis of Operators, Academic Press, New York. Yafaev, D. R.: Mathematical Scattering Theory, General Theory, Amer. Math. Soc., Providence, 1992.