Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Về các Giải pháp của Bài toán Cauchy cho Hai Lớp Phương Trình Pseudo-Differential Bán Tuyến Tính trên Trường p-Adic
Tóm tắt
Trong bài báo này, chúng tôi sử dụng cơ sở wavelet p-adic, kết hợp với phương pháp tách biến và phương pháp phân rã Adomian (như một sơ đồ trong phân tích số), để điều tra ban đầu giải pháp của bài toán Cauchy cho hai lớp phương trình pseudo-differential bậc nhất và bậc hai liên quan đến các toán tử pseudo-differential như toán tử phân đoạn Taibleson trong bối cảnh của trường p-adic.
Từ khóa
Tài liệu tham khảo
G. Adomian, “A review of the decomposition method and some recent results for nonlinear equation,” Math. Comput.Model. 13 (7), 17–34 (1990).
G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method (Kluwer, Boston, MA, 1994).
S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, “p-Adic semi-linear evolutionary pseudo-differential equations in the Lizorkin space,” Dokl. Ross. Akad. Nauk 415 (3), 295–299 (2007); English transl.: Russian Dokl. Math. 76 (1), 539–543 (2007).
S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, “Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, p-adic wavelets, Tauberian theorems,” J. Fourier Anal. Appl. 12 (4), 393–425 (2006).
S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, Theory of p-Adic Distributions: Linear and Nonlinear Models (Cambridge Univ. Press, 2010).
S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, “The Cauchy problems for evolutionary pseudodifferential equations over p-adic field and the wavelet theory,” J. Math. Anal. Appl. 375, 82–98 (2011).
G. Alobaidi and R. Mallier, “On the Abel equation of the second kind with sinusoidal forcing,” Nonlin. Anal. Model. Control 12 (1), 33–44 (2007).
A. Avantaggiati (Ed.), Pseudodifferential Operators with Applications (Springer-Verlag, Berlin, Heidelberg, 2010).
L. Bougoffa, “New exact general solutions of Abel equation of the second kind,” Appl.Math. Lett. 216, 689–691 (2010).
O. F. Casas-Sánchez, J. Galeano-Peñaloza and J. J. Rodriguez-Vega, “Parabolic-type pseudodifferential equations with elliptic symbols in dimension 3 over p-adics,” p-Adic Numbers Ultrametric Anal. Appl. 7 (1), 1–16 (2015).
O. F. Casas-Sánchez and W.A. Zúñiga-Galindo, “p-Adic elliptic quadratic forms, parabolic-type pseudodifferential equations with variable coefficients and Markov processes,” p-Adic Numbers Ultrametric Anal. Appl. 6 (1), 1–20 (2014).
N. M. Chuong and N. V. Co, “The Cauchy problem for a class of pseudodifferential equations over p-adic field,” J. Math. Anal. Appl. 340, 629–645 (2008).
I. S. Grandsteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, San Francisco, London, 1965).
C. Guler, “A new numerical algorithm for the Abel equation of the second kind,” Int. J. Comput. Math. 84 (1), 109–119 (2007).
A. Haar, “Zur Theorie der orthogonalen Funktionensysteme,” Math. Ann. 69, 331–371 (1910).
E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen, vol. 1 (B.G. Teubner, Stuttgart, 1977).
A. N. Kochubei, Pseudo-Differential Equations and Stochastics over non-Archimedean Fields (Marcel Dekker, Inc., New York, Basel, 2001).
S. V. Kozyrev, “Wavelet theory as p-adic spectral analysis,” Izv. Math. 66 (2), 367–376 (2002).
S. V. Kozyrev, “p-Adic pseudodifferential operators and p-adic wavelets,” Theor. Math. Phys. 138, 322–332 (2004).
A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer Acad. Publishers, Dordrecht, 1994).
A. Yu. Khrennikov and A. N. Kochubei, “p-adic analogue of the porous medium equation,” J. Fourier Anal. Appl. 24, 1401–1424 (2017).
A. Khrennikov, K. Oleschko and M. J. C. López, “Application of p-adic wavelets to model reaction-diffusion dynamics in random porous media,” J. Fourier Anal. Appl. 22, 809–822 (2016).
A. Khrennikov, K. Oleschko, M.J.C. López, “Modeling fluid’s dynamics with master equations in ultrametric spaces representing the treelike structure of capillary networks,” Entropy 18 (7), art. 249, 28 pp (2016).
A. Yu. Khrennikov and V. M. Shelkovich, “Non-Haar p-adic wavelets and their application to pseudodifferential operators and equations,” Appl. Comp. Harm. Anal. 28, 1–23 (2010).
A. Yu. Khrennikov, V.M. Shelkovich and J. H. Van Der Walt, “Adelic multiresolution analysis, construction of wavelet bases and pseudo-differential operators,” J. Fourier Anal. Appl. 19, 1323–1358 (2013).
A. Yu. Khrennikov, S. V. Kozyrev and W. A. Zúñiga-Galindo, Ultrametric Pseudodifferential Equations and Applications (Cambridge Univ. Press, 2018).
S. V. Kozyrev and A. Yu. Khrennikov, “Pseudo-differential operators on ultrametric spaces and ultrametric wavelets,” Izv. Ross. Akad. Nauk Ser.Mat. 69 (5), 133–148 (2005).
M. P. Markakis, “Closed-form solutions of certain Abel equations of the first kind,” Appl. Math. Lett. 22, 1401–1405 (2009).
C. W. Onneweer, “Differentiation on a p-adic or p-series field,” in Linear Spaces and Approximation, pp. 187–198 (Birkhauser, Verlag, Basel, 1978).
D. E. Panayotounakos, “Exact analytic solutions of unsolvable classes of first and second order nonlinear ODEs (Part I: Abel’s equations),” Appl.Math. Lett. 18, 155–162 (2005).
D. E. Panayotounakos and N. Sotiropoulos, “Exact analytic solutions of unsolvable classes of first-and second-order nonlinear ODEs (Part II: Emden-Fowler and relative equations),” Appl. Math. Lett. 18, 367–374 (2005).
A.D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions forOrdinary Differential Equations (CRC Press, New York, 1999).
H. Qiu and W. Y. Su, “Pseudo-differential operators over p-adic fields,” Science in China, Ser.A 41 (4), 323–336 (2011).
E. Salinas-Hernández, J. Martínez-Castro and R. Muñoz, “New general solutions to the Abel equation of the second kind using functional transformations,” Appl.Math. Comput. 218, 8359–8362 (2012).
F. Schwarz, “Algorithmic solution of Abel’s equation,” Computing 61 (1), 39–46 (1998).
W. Y. Su, “Psuedo-differential operators and derivatives on locally compact Vilenkin groups,” Science in China, Ser.A 35 (7), 826–836 (1992).
W. Y. Su, Harmonic Analysis and Fractal Analysis over Local Fields and Applications (World Scientific, Singapore, 2017).
M. H. Taibleson, Fourier Analysis on Local Fields (Princeton Univ. Press, Princeton, 1975).
J. B. Tatum and W. A. Jaworski, “A solution of Abel’s equation,” J. Quant. Spectrosc. Radiat. Transfer 38 (4), 319–322 (1987).
M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE (Birkhäuser, Boston 1991).
M. E. Taylor, Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs 81 (American Math. Society, Providence, RI, 2000).
I. V. Volovich, “p-Adic space-time and string theory,” Theor. Math. Phys. 71, 574–576 (1987).
V. S. Vladimirov, “Generalized functions over p-adic number field,” UspekhiMat. Nauk 43, 17–53 (1988).
V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, Singapore, 1994).
A. M. Wazwaz, “A comparison between Adomian decomposition method and Taylor series method in the series solutions,” Appl.Math. Comput. 97, 37–44 (1998).
W. A. Zúñiga-Galindo, “Fundamental solutions of pseudo-differential operators over p-adic fields,” Rend. Semin. Mat. Univ. Padova 109, 241–245 (2003).
W. A. Zúñiga-Galindo, “Parabolic equations and Markov processes over p-adic fields,” Potent. Anal. 28, 185–200 (2008).