On the Small Time Asymptotics of Quasilinear Parabolic Stochastic Partial Differential Equations
Tóm tắt
In this paper, we establish small time large deviation principles for the quasilinear parabolic stochastic partial differential equations with multiplicative noise, which are neither monotone nor locally monotone.
Tài liệu tham khảo
Aida, S., Kawabi, H.: Short Time Asymptotics of a Certain Infinite Dimensional Diffusion Process. Stochastic Analysis and Related Topics, VII (Kusadasi, 1998), 77-124, Progr Probab., vol. 48. Boston, Birkhäuser Boston (2001)
Aida, S., Zhang, T.: On the small time asymptotics of diffusion processes on path groups. Potential Anal. 16(1), 67–78 (2002)
Barlow, M. T., Yor, M.: Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local time. J. Funct. Anal. 49, 198–229 (1982)
Brzeźniak, Z.: On stochastic convolution in Banach spaces and applications. Stoch. Stoch. Rep. 61(3-4), 245–295 (1997)
Brzeźniak, Z., Peszat, S.: Space-time continuous solutions to SPDEs driven by a homogeneous Wiener process. Stud. Math. 137(3), 261–299 (1999)
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)
Davis, B.: On the lp norms of stochastic integrals and other martingales. Duke Math. J. 43, 697–704 (1976)
Debussche, A., Hofmanová, M., Vovelle, J.: Degenerate parabolic stochastic partial differential equations: Quasilinear case. Ann. Probab. 44(3), 1916–1955 (2016)
Debussche, A., De Moor, S., Hofmanová, M.: A regularity result for quasilinear stochastic partial differnential equations of parabolic type. SIAM J. Math. Anal. 47(2), 1590–1614 (2015)
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Jones and Bartlett, Boston (1993)
Dong, Z., Zhang, R.: On the small time asymptotics of 3D stochastic primitive equations. Math. Methods Appl. Sci. 41(16), 6336–6357 (2018)
Dong, Z., Zhang, R., Zhang, T: Large deviations for quasilinear parabolic stochastic partial differential equations. Potential Anal. 53(1), 183–202 (2020)
Fang, S., Zhang, T.: On the small time behavior of Ornstein-Uhlenbeck processes with unbounded linear drifts. Probab. Theory Related Fields 114(4), 487–504 (1999)
Gagneux, G., Madaune-Tort, M.: Analyse Mathématique De MoéLes Non Linéaires De L’ingénierie Pétroliére. Springer, Berlin (1996)
Hino, M., Ramírez, J.: Small-time Gaussian behavior of symmetric diffusion semigroups. Ann. Probab. 31(3), 1254–1295 (2003)
Hofmanová, M., Zhang, T.: Quasilinear parabolic stochastic differential equations: existence, uniqueness. Stoch. Process. Appl. 127(10), 3354–3371 (2017)
Denis, L., Matoussi, A., Stoica, L.: Lp estimates for the uniform norm of solutions of quasilinear SPDE’s. Probab. Theory Related Fields 133(4), 437–463 (2005)
Varadhan, S. R. S.: Diffusion processes in a small time interval. Comm. Pure Appl. Math. 20, 659–685 (1967)
Xu, T., Zhang, T.: On the small time asymptotics of the two-dimensional stochastic Navier-Stokes equations. Ann. Inst. Henri Poincaré Probab. Stat. 45(4), 1002–1019 (2009)
Zhang, T.: On the small time asymptotics of diffusion processes on Hilbert spaces. Ann. Probab. 28(2), 537–557 (2000)