On the Self-Propagating High-Temperature Synthesis of a Ti–Si–C Composite Using Fullerites

Pleiades Publishing Ltd - Tập 17 - Trang 564-570 - 2022
R. M. Nikonova1, N. S. Larionova1, V. I. Lad’yanov1
1Scientific Center for Metallurgical Physics and Materials Science, Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences, Izhevsk, Russia

Tóm tắt

A 3Ti–Si–2C composite material is obtained by self-propagating high-temperature synthesis, in which C60/70 fullerite is used as carbon. Its phase composition and structure are investigated by X-ray diffraction and scanning electron microscopy. It is shown that a composite containing TiC carbide, Ti5Si3Cx carbosilicide, and Ti3SiC2 MAX phase as well as traces of titanium silicide TiSi2 is formed as a result of synthesis. The structure of the samples is inhomogeneous and contains regions that simultaneously consist of several phases.

Tài liệu tham khảo

A. G. Merzhanov, Self-Propagating High-Temperature Synthesis: Theory and Practice (Territoriya, Chernogolovka, 2001) [in Russian]. The Concept of SHS Development as a Field of Scientific and Technological Progress, Ed. by A. G. Merzhanov (Territoriya, Chernogolovka, 2003) [in Russian]. A. G. Merzhanov and A. S. Mukas’yan, Solid Flame Combustion (Torus Press, Moscow, 2007) [in Russian]. A. E. Sychev and A. G. Merzhanov, Russ. Chem. Rev. 73, 147 (2004). A. S. Rogachev and A. S. Mukas’yan, Combustion for Material Synthesis: An Introduction to Structural Macrokinetics (Fizmatlit, Moscow, 2012) [in Russian]. Proceedings of the 15th International Symposium on Self-Propagating High-Temperature Synthesis, Moscow, September 16–20, 2019 (IPCP RAS, Chernogolovka, 2019). M. A. El Saeed, F. A. Deorsola, and R. M. Rashad, Int. J. Refract. Met. Hard Mater. 35, 127 (2012). https://doi.org/10.1016/j.ijrmhm.2012.05.001 N. I. Afanasyev, O. K. Lepakova, and V. D. Kitler, J. Phys.: Conf. Ser. 1459, 012008 (2020). https://doi.org/10.1088/1742-6596/1459/1/012008 S. G. Vadchenko, A. E. Sytschev, D. Yu. Kovalev, et al., Nanotechnol. Russ. 10, 67 (2015). https://doi.org/10.1134/S1995078015010206 M. W. Barsoum, Prog. Solid State Chem. 28, 201 (2000). R. A. Andrievskii, Phys. Usp. 60, 276 (2017). https://doi.org/10.3367/UFNe.2016.09.037972 L. Yong-Ming, P. Wei, L. Shuqin, et al., Ceram. Int. 28, 227 (2002). N. F. Gao, Y. Miyamoto, and D. Zhang, Mater. Lett. 55, 61 (2002). https://doi.org/10.1016/S0167-577X(01)00620-6 J.-F. Li, T. Matsuki, and R. Watanabe, J. Am. Ceram. Soc. 85, 1004 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00210.x N. F. Gao, J. T. Li, D. Zhang, et al., J. Eur. Ceram. Soc. 22, 2365 (2002). https://doi.org/10.1016/S0955-2219(02)00021-3 J. Emmerlich, D. Music, P. Eklund, et al., Acta Mater. 55, 1479 (2007). https://doi.org/10.1016/j.actamat.2006.10.010 Z. F. Zhang, Z. M. Sun, and H. Hashimoto, J. Alloys Compd. 352, 283 (2003). https://doi.org/10.1016/S0925-8388(02)01171-4 P. V. Istomin, E. I. Istomina, V. Nadutkin, et al., Refract. Ind. Ceram. 60, 264 (2019). https://doi.org/10.1007/s11148-019-00349-3 C. L. Yeh and Y. G. Shen, J. Alloys Compd. 461, 654 (2008). https://doi.org/10.1016/j.jallcom.2007.07.088 F. Meng, B. Liang, and M. Wang, Int. J. Refract. Met. Hard Mater. 41, 152 (2013). https://doi.org/10.1016/j.ijrmhm.2013.03.005 K. M. Kadish and R. S. Ruoff, Fullerenes: Chemistry, Physics, and Technology (Wiley, New York, 2000). N. S. Larionova, R. M. Nikonova, and V. I. Ladyanov, Adv. Powder Technol. 29 (2), 399 (2018). doi org/https://doi.org/10.1016/j.apt.2017.11.027 N. S. Larionova, R. M. Nikonova, A. L. Ul’yanov, and V. I. Lad’yanov, Phys. Met. Metallogr. 122, 696 (2021). https://doi.org/10.1134/S0031918X21050082 F. Robles and C. Hernandez, J. Metall. 10, 107 (2004). M. Popov, V. Medvedev, V. Blank, et al., J. Appl. Phys. 108, 094317 (2010). https://doi.org/10.1063/1.3505757 V. V. Medvedev, M. Y. Popov, B. N. Mavrin, et al., Appl. Phys. A 105, 45 (2011). https://doi.org/10.1007/s00339-011-6544-4