On the Sample Complexity of Stabilizing Linear Dynamical Systems from Data

Steffen W. R. Werner1, Benjamin Peherstorfer1
1Courant Institute of Mathematical Sciences, New York University, New York, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems, Adv. Des. Control, vol. 6. SIAM, Philadelphia, PA (2005). https://doi.org/10.1137/1.9780898718713

Armstrong, E.: An extension of Bass’ algorithm for stabilizing linear continuous constant systems. IEEE Trans. Autom. Control 20(1), 153–154 (1975). https://doi.org/10.1109/TAC.1975.1100874

Armstrong, E., Rublein, G.: A stabilization algorithm for linear discrete constant systems. IEEE Trans. Autom. Control 21(4), 629–631 (1976). https://doi.org/10.1109/TAC.1976.1101295

Beattie, C.A., Gugercin, S.: Realization-independent $$\cal{H}_2$$-approximation. In: 51st IEEE Conference on Decision and Control (CDC), pp. 4953–4958 (2012). https://doi.org/10.1109/CDC.2012.6426344

Behr, M., Benner, P., Heiland, J.: Example setups of Navier-Stokes equations with control and observation: Spatial discretization and representation via linear-quadratic matrix coefficients. e-print arXiv:1707.08711, arXiv (2017). https://doi.org/10.48550/arXiv.1707.08711. Mathematical Software (cs.MS)

Benner, P., Castillo, M., Quintana-Ortí, E.S., Hernández, V.: Parallel partial stabilizing algorithms for large linear control systems. J. Supercomput. 15(2), 193–206 (2000). https://doi.org/10.1023/A:1008108004247

Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015). https://doi.org/10.1137/130932715

Benner, P., Heiland, J., Werner, S.W.R.: Robust output-feedback stabilization for incompressible flows using low-dimensional $$\cal H\it _{\infty }$$-controllers. Comput. Optim. Appl. 82(1), 225–249 (2022). https://doi.org/10.1007/s10589-022-00359-x

Benner, P., Li, J.R., Penzl, T.: Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer. Lin. Alg. Appl. 15(9), 755–777 (2008). https://doi.org/10.1002/nla.622

Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Silveira, L.M.: Model Order Reduction. Volume 1: System- and Data-Driven Methods and Algorithms. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110498967

Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Silveira, L.M.: Model Order Reduction. Volume 2: Snapshot-Based Methods and Algorithms. De Gruyter, Berlin, Boston (2021). https://doi.org/10.1515/9783110671490

Benner, P., Werner, S.W.R.: MORLAB – Model Order Reduction LABoratory (version 5.0) (2019). https://doi.org/10.5281/zenodo.3332716. See also: https://www.mpi-magdeburg.mpg.de/projects/morlab

Benner, P., Werner, S.W.R.: MORLAB—The Model Order Reduction LABoratory. In: P. Benner, T. Breiten, H. Faßbender, M. Hinze, T. Stykel, R. Zimmermann (eds.) Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics, vol. 171, pp. 393–415. Birkhäuser, Cham (2021). https://doi.org/10.1007/978-3-030-72983-7_19

Berberich, J., Koch, A., Scherer, C.W., Allgöwer, F.: Robust data-driven state-feedback design. In: 2020 American Control Conference (ACC), pp. 1532–1538 (2020). https://doi.org/10.23919/ACC45564.2020.9147320

Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control Theory, Studies in Applied and Numerical Mathematics, vol. 15. SIAM, Philadelphia, PA (1994). https://doi.org/10.1137/1.9781611970777

Breiten, T., Morandin, R., Schulze, P.: Error bounds for port-Hamiltonian model and controller reduction based on system balancing. Comput. Math. Appl. 116, 100–115 (2021). https://doi.org/10.1016/j.camwa.2021.07.022

Brunton, S.L., Brunton, B.W., Proctor, J.L., Kutz, J.N.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 11(2), e0150171 (2016). https://doi.org/10.1371/journal.pone.0150171

Brunton, S.L., Kutz, J.N.: Data-driven science and engineering: machine learning, dynamical systems, and control. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108380690

Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. U. S. A. 113(15), 3932–3937 (2016). https://doi.org/10.1073/pnas.1517384113

Campi, M.C., Lecchini, A., Savaresi, S.M.: Virtual reference feedback tuning: a direct method for the design of feedback controllers. Automatica J. IFAC 38(8), 1337–1346 (2002). https://doi.org/10.1016/S0005-1098(02)00032-8

Datta, B.N.: Numerical Methods for Linear Control Systems: Design and Analysis. Academic Press, San Diego, CA (2004). https://doi.org/10.1016/B978-0-12-203590-6.X5000-9

De Hoop, M.V., Kovachki, N.B., Nelsen, N.H., Stuart, A.M.: Convergence rates for learning linear operators from noisy data. e-print 2108.12515, arXiv (2021). https://doi.org/10.48550/arXiv.2108.12515. Statistics Theory (math.ST)

De Persis, C., Tesi, P.: Formulas for data-driven control: Stabilization, optimality, and robustness. IEEE Trans. Autom. Control 65(3), 909–924 (2020). https://doi.org/10.1109/TAC.2019.2959924

Dean, S., Mania, H., Matni, N., Recht, B., S., T.: On the sample complexity of the linear quadratic regulator. Found. Comput. Math. 20(4), 633–679 (2020). https://doi.org/10.1007/s10208-019-09426-y

Dragan, V., Halanay, A.: Stabilization of Linear Systems. Systems & Control: Foundations & Applications. Birkhäuser, Boston, MA (1999). https://doi.org/10.1007/978-1-4612-1570-7

Drmač, Z., Mezić, I., Mohr, R.: Data driven modal decompositions: Analysis and enhancements. SIAM J. Sci. Comput. 40(4), A2253–A2285 (2018). https://doi.org/10.1137/17M1144155

Fliess, M., Join, C.: Model-free control. Int. J. Control 86(12), 2228–2252 (2013). https://doi.org/10.1080/00207179.2013.810345

Gevers, M., Bazanella, A.S., Bombois, X., Miskovic, L.: Identification and the information matrix: How to get just sufficiently rich? IEEE Trans. Autom. Control 54(12), 2828–2840 (2009). https://doi.org/10.1109/TAC.2009.2034199

Golub, G.H., Van Loan, C.F.: Matrix Computations, fourth edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013)

Gosea, I.V., Gugercin, S., Beattie, C.: Data-driven balancing of linear dynamical systems. SIAM J. Sci. Comput. 44(1), A554–A582 (2022). https://doi.org/10.1137/21M1411081

Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.2. http://cvxr.com/cvx (2020)

Grant, M.C., Boyd, S.P.: Graph implementations for nonsmooth convex programs. In: V.D. Blondel, S.P. Boyd, H. Kimura (eds.) Recent Advances in Learning and Control, Lect. Notes Control Inf. Sci., vol. 371, pp. 95–110. Springer, London (2008). https://doi.org/10.1007/978-1-84800-155-8_7

Gurobi Optimization, LLC: Gurobi optimizer reference manual (2022). https://www.gurobi.com

Ho, B.L., Kalman, R.E.: Editorial: Effective construction of linear state-variable models from input/output functions. at-Automatisierungstechnik 14(1–12), 545–548 (1966). https://doi.org/10.1524/auto.1966.14.112.545

Jonckheere, E.A., Silverman, L.M.: A new set of invariants for linear systems–application to reduced order compensator design. IEEE Trans. Autom. Control 28(10), 953–964 (1983). https://doi.org/10.1109/TAC.1983.1103159

Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc. R. Soc. A: Math. Phys. Eng. Sci. 474(2219), 20180335 (2018). https://doi.org/10.1098/rspa.2018.0335

Kaiser, E., Kutz, J.N., Brunton, S.L.: Data-driven discovery of Koopman eigenfunctions for control. Mach. Learn.: Sci. Technol. 2(3), 035023 (2021). https://doi.org/10.1088/2632-2153/abf0f5

Kramer, B., Peherstorfer, B., Willcox, K.: Feedback control for systems with uncertain parameters using online-adaptive reduced models. SIAM J. Appl. Dyn. Syst. 16(3), 1563–1586 (2017). https://doi.org/10.1137/16M1088958

Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1995)

Leibfritz, F.: $$COMPl_{e}ib$$: COnstrained Matrix-optimization Problem library – a collection of test examples for nonlinear semidefinite programs, control system design and related problems. Tech.-report, University of Trier (2004). http://www.friedemann-leibfritz.de/COMPlib_Data/COMPlib_Main_Paper.pdf

Lequin, O., Gevers, M., Mossberg, M., Bosmans, E., Triest, L.: Iterative feedback tuning of PID parameters: comparison with classical tuning rules. Control Eng. Pract. 11(9), 1023–1033 (2003). https://doi.org/10.1016/S0967-0661(02)00303-9

Mayo, A.J., Antoulas, A.C.: A framework for the solution of the generalized realization problem. Linear Algebra Appl. 425(2–3), 634–662 (2007). https://doi.org/10.1016/j.laa.2007.03.008. Special issue in honor of P. A. Fuhrmann, Edited by A. C. Antoulas, U. Helmke, J. Rosenthal, V. Vinnikov, and E. Zerz

MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 9.1.9 (2019). https://docs.mosek.com/9.1/toolbox/index.html

Peherstorfer, B.: Multifidelity Monte Carlo estimation with adaptive low-fidelity models. SIAM/ASA J. Uncertainty Quantification 7(2), 579–603 (2019). https://doi.org/10.1137/17M1159208

Peherstorfer, B.: Sampling low-dimensional Markovian dynamics for preasymptotically recovering reduced models from data with operator inference. SIAM J. Sci. Comput. 42(5), A3489–A3515 (2020). https://doi.org/10.1137/19M1292448

Peherstorfer, B., Gugercin, S., Willcox, K.: Data-driven reduced model construction with time-domain Loewner models. SIAM J. Sci. Comput. 39(5), A2152–A2178 (2017). https://doi.org/10.1137/16M1094750

Peherstorfer, B., Willcox, K.: Data-driven operator inference for nonintrusive projection-based model reduction. Comput. Methods Appl. Mech. Eng. 306, 196–215 (2016). https://doi.org/10.1016/j.cma.2016.03.025

Quarteroni, A., Rozza, G.: Reduced Order Methods for Modeling and Computational Reduction, MS &A – Modeling, Simulation and Applications, vol. 9. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02090-7

Rosenbrock, H.H.: State-space and Multivariable Theory, Studies in dynamical systems, vol. 3. Wiley, New York (1970)

Safonov, M.G., Tsao, T.C.: The unfalsified control concept: A direct path from experiment to controller. In: B.A. Francis, A.R. Tannenbaum (eds.) Feedback Control, Nonlinear Systems, and Complexity, Lect. Notes Control Inf. Sci., vol. 202, pp. 196–214. Springer, Berlin, Heidelberg (1995). https://doi.org/10.1007/BFb0027678

Schaeffer, H., Caflisch, R., Hauck, C.D., Osher, S.: Sparse dynamics for partial differential equations. Proc. Natl. Acad. Sci. U. S. A. 110(17), 6634–6639 (2013). https://doi.org/10.1073/pnas.1302752110

Schaeffer, H., Tran, G., Ward, R.: Extracting sparse high-dimensional dynamics from limited data. SIAM J. Appl. Math. 78(6), 3279–3295 (2018). https://doi.org/10.1137/18M116798X

Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010). https://doi.org/10.1017/S0022112010001217

Schulze, P., Unger, B.: Data-driven interpolation of dynamical systems with delay. Syst. Control Lett. 97, 125–131 (2016). https://doi.org/10.1016/j.sysconle.2016.09.007

Schulze, P., Unger, B., Beattie, C., Gugercin, S.: Data-driven structured realization. Linear Algebra Appl. 537, 250–286 (2018). https://doi.org/10.1016/j.laa.2017.09.030

Sturm, J.F.: Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999). https://doi.org/10.1080/10556789908805766

Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014). https://doi.org/10.3934/jcd.2014.1.391

Tu, S., Boczar, R., Packard, A., Recht, B.: Non-asymptotic analysis of robust control from coarse-grained identification. e-print 1707.04791, arXiv (2017). https://doi.org/10.48550/arXiv.1707.04791. Optimization and Control (math.OC)

Van Overschee, P., De Moor, B.: Subspace Identification for Linear Systems: Theory, Implementation, Applications. Springer, Boston, MA (1996). https://doi.org/10.1007/978-1-4613-0465-4

Van Waarde, H.J., Eising, J., Trentelman, H.L., Camlibel, M.K.: Data informativity: A new perspective on data-driven analysis and control. IEEE Trans. Autom. Control 65(11), 4753–4768 (2020). https://doi.org/10.1109/TAC.2020.2966717

Voigt, M.: On linear-quadratic optimal control and robustness of differential-algebraic systems. Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany (2015)

Werner, S.W.R.: Code, data and results for numerical experiments in “On the sample complexity of stabilizing linear dynamical systems from data” (version 1.0) (2022). https://doi.org/10.5281/zenodo.5902997

Willems, J.C., Rapisarda, P., Markovsky, I., De Moor, B.L.M.: A note on persistency of excitation. Syst. Control Lett. 54(4), 325–329 (2005). https://doi.org/10.1016/j.sysconle.2004.09.003

Ziegler, J., Nichols, N.: Optimum settings for automatic controllers. Trans. ASME 64, 759–768 (1942)