On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations

Springer Science and Business Media LLC - Tập 284 - Trang 919-930 - 2008
Qionglei Chen1, Changxing Miao1, Zhifei Zhang2
1Institute of Applied Physics and Computational Mathematics, Beijing, P.R. China
2School of Mathematical Science, Peking University, Beijing, P. R. China

Tóm tắt

We improve and extend some known regularity criterion of the weak solution for the 3D viscous Magneto-hydrodynamics equations by means of the Fourier localization technique and Bony’s para-product decomposition.

Tài liệu tham khảo

Beirão da Veiga H.: A new regularity class for the Navier-Stokes equations in \({\mathbb{R}^n}\) . Chinese Ann. of Math. 16B, 407–412 (1995) Bony J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981) Chen Q., Zhang Z.: Space-time estimates in the Besov spaces and the Navier-Stokes equations. Meth. Appl. Anal. 13, 107–122 (2006) Chen Q., Miao C., Zhang Z.: The Beale-Kato-Majda criterion to the 3D Magneto-hydrodynamics equations. Commun. Math. Phys. 275, 861–872 (2007) Chemin, J.-Y.: Perfect Incompressible Fluids. New York: Oxford University Press, 1998 Cheskidov, A., Shvydkoy, R.: On the regularity of weak solutions of the 3D Navier-Stokes equations in \({B^{-1}_{\infty,\infty}}\) . http://arXiv.org/list/0708.3067v2, 2007 Constantin P., Fefferman C.: Direction of vorticity and the problem of global regularity for the Navier-Stokes equations. Indiana Univ. Math. J. 42, 775–788 (1993) Duvaut G., Lions J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ratl. Mech. Anal. 46, 241–279 (1972) Escauriaza L., Seregin G., S̆verák V.: L 3,∞-solutions to the Navier-Stokes equations and backward uniqueness. Russ. Math. Surv. 58, 211–250 (2003) Fujita H., Kato T.: On the Navier-Stokes initial value problem I. Archiv. Rat. Mech. Anal. 16, 269–315 (1964) Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Differ. Eq. 62, 186–212 (1986) He C., Xin Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Diff. Eqs. 213, 235–254 (2005) Kato T.: Nonstationary flows of viscous and ideal fluids in \({\mathbb{R}^3}\) . J. Funct. Anal. 9, 296–305 (1972) Kozono H., Ogawa T., Taniuchi Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002) Politano H., Pouquet A., Sulem P.L.: Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 2, 2931–2939 (1995) Serrin J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rat. Mech. Anal. 9, 187–195 (1962) Sermange M., Teman R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 635–664 (1983) Triebel, H.: Theory of Function Spaces. Monograph in Mathematics, Vol. 78, Basel: Birkhauser Verlag, 1983 Von Wahl W.: Regularity of weak solutions of the Navier-Stokes equations. Proc. Symp. Pure Appl. Math. 45, 497–503 (1986) Wu J.: Bounds and new approaches for the 3D MHD equations. J. Nonlinear Sci. 12, 395–413 (2002) Wu J.: Regularity results for weak solutions of the 3D MHD equations. Discrete. Contin. Dynam. Syst. 10, 543–556 (2004) Wu J.: Generalized MHD equations. J. Differ. Eqs. 195, 284–312 (2003) Wu J.: Regularity criteria for the generalized MHD equations. Comm. PDE 33(2), 285–306 (2008) Zhou Y.: Remarks on regularities for the 3D MHD equations. Discrete. Contin. Dynam. Syst. 12, 881–886 (2005)