On the R0-Tensors and the Solution Map of Tensor Complementarity Problems

Journal of Optimization Theory and Applications - Tập 181 Số 1 - Trang 163-183 - 2019
Vu Trung Hieu1
1Division of Mathematics, Phuong Dong University, 171 Trung Kinh Street, Cau Giay, Hanoi, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

Song, Y., Qi, L.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 33, 308–323 (2017)

Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015)

Huang, Z.H., Qi, L.: Formulating an $$n$$ n -person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66, 557–576 (2017)

Bai, X.L., Huang, Z.H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)

Bai, X.L., Huang, Z.H., Wang, Y.: Exceptionally regular tensors and tensor complementarity problems. Optim. Methods Softw. 31, 815–828 (2016)

Balaji, R., Palpandi, K.: Positive definite and Gram tensor complementarity problems. Optim. Lett. 12, 639–648 (2018)

Chen, H., Qi, L., Song, Y.: Column sufficient tensors and tensor complementarity problems. Front. Math. China 13, 255–276 (2018)

Du, S., Zhang, L.: A mixed integer programming approach to the tensor complementarity problem. arxiv:1804.00406 (2018)

Liu, D., Li, W., Vong, S.-W.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear A 66, 1726–1749 (2018)

Ling, L., He, H., Ling, C.: On error bounds of polynomial complementarity problems with structured tensors. Optimization 67, 1–18 (2017)

Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. 11, 471–482 (2017)

Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Springer, Singapore (2018)

Song, Y., Qi, L.: Necessary and sufficient conditions for copositive tensors. Linear Multilinear A 63, 120–131 (2015)

Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)

Song, Y., Qi, L.: Strictly semi-positive tensors and the boundedness of tensor complementarity problems. Optim. Lett. 11, 1407–1426 (2017)

Song, Y., Yu, G.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170, 85–96 (2016)

Song, Y., Mei, W.: Structural properties of tensors and complementarity problems. J. Optim. Theory Appl. 177, 289–305 (2018)

Xie, S.L., Li, D.H., Xu, H.R.: An iterative method for finding the least solution to the tensor complementarity problem. J. Optim. Theory Appl. 175, 119–136 (2017)

Zhao, X., Fan, J.: A semidefinite method for tensor complementarity problems. Optim. Methods Softw. https://doi.org/10.1080/10556788.2018.1439489 (2018)

Zheng, Y.N., Wu, W.: On a class of semi-positive tensors in tensor complementarity problem. J. Optim. Theory Appl. 177, 127–136 (2018)

Oettli, W., Yen, N.D.: In: Giannessi, F., Maugeri, A. (eds.) Continuity of the solution set of homogeneous equilibrium problems and linear complementarity problems. In: Variational Inequalities and Network Equilibrium Problem. Plenum Press, New York (1995)

Gowda, M.S.: Polynomial complementarity problems. Pac. J. Optim. 13, 227–241 (2017)

Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, Boston (1992)

Gowda, M.S.: On the continuity of the solution map in linear complementarity problems. SIAM J. Optim. 2, 619–634 (1992)

Phung, H.T.: On continuity properties of the solution map in linear complementarity problems. Vietnam J. Math. 30, 257–258 (2002)

Robinson, S.M.: Generalized: equations and their solutions. Part I: basic theory. Math. Program. Stud. 10, 128–141 (1979)

Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas. Princeton University Press, Princeton (2009)

Bochnak, R., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Berlin (1998)

Dang, V.D., Ha, H.V., Pham, T.S.: Well-posedness in unconstrained polynomial optimization problems. SIAM J. Optim. 26, 1411–1428 (2016)

Coste, M.: An Introduction to Semialgebraic Geometry. Université de Rennes, Institut de Recherche Mathématique de Rennes (2002)

Rudin, W.: Functional Analysis. McGraw-Hill, New York City (1991)

Tu, Loring W.: An Introduction to Manifolds, 2nd edn. Springer, Berlin (2010)

Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)

Lee, G.M., Tam, N.N., Yen, N.D.: Quadratic Programming and Affine Variational Inequalities: A Qualitative Study. Springer, New York (2005)

Lee, J.H., Lee, G.M., Pham, T.S.: Genericity and Holder stability in semi-algebraic variational inequalities. J. Optim. Theory Appl. 178, 56–77 (2018)