Về Hiệu Suất Của Phương Pháp Phần Tử Phím Kiểm Soát Nút Trong Mô Hình Dòng Chảy Chất Lỏng Đa Phân Tử Trong Vật Liệu Xốp Không Đồng Nhất

Transport in Porous Media - Tập 135 Số 2 - Trang 409-429 - 2020
Abdul Salam1, Ahmad Abushaikha1
1Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar

Tóm tắt

Tóm tắt

Trong bài báo này, chúng tôi phê bình hiệu suất của phương pháp phần tử phím kiểm soát nút (NCVFE) trong việc mô hình hóa dòng chảy chất lỏng đa phân tử trong môi trường không đồng nhất. Phương pháp NCVFE giải quyết áp suất tại các đỉnh của các phần tử và một lưới thể tích kiểm soát được xây dựng xung quanh chúng. Các thuộc tính vật liệu được định nghĩa trên các phần tử, trong khi quá trình vận chuyển được mô phỏng trên các thể tích kiểm soát. Hai lưới này không được căn chỉnh, dẫn đến kết quả không chính xác và hiện tượng lan tỏa chất lỏng nhân tạo khi mô hình hóa dòng chảy chất lỏng đa phân tử trong các môi trường không đồng nhất. Chúng tôi tiến hành các bài kiểm tra số để định lượng và hình dung mức độ lan tỏa chất lỏng nhân tạo này trong các miền có các thuộc tính vật liệu khác nhau. Các miền được tạo thành từ các phần tử tứ diện. Sự lan tỏa chất lỏng nhân tạo lớn được quan sát thấy trong các lưới thô; tuy nhiên, nó giảm đi khi độ phân giải lưới tăng. Những phát hiện này thúc đẩy việc sử dụng các lưới có độ phân giải cao cho phương pháp và nhu cầu phát triển các phương pháp số mới để giải quyết dòng chảy phi vật lý này.

Từ khóa


Tài liệu tham khảo

Abd, A., Zhang, N., Abushaikha, A.: Modelling full tensor permeability in fractured carbonates using advanced discretization schemes. In: The Third EAGE Workshop on Well Injectivity and Productivity in Carbonates, Doha, Qatar (2019)

Abd, A.S., Abushaikha, A.: Velocity dependent up-winding scheme for node control volume finite element method for fluid flow in porous media. Sci. Rep. 10(1), 1–13 (2020)

Abushaikha, A.: Numerical Methods for Modelling Fluid Flow in Highly Heterogeneous and Fractured Reservoirs. PhD thesis, Imperial College London, London: United Kingdom (2013)

Abushaikha, A., Gosselin, O.: Matrix-fracture transfer function in dual-medium flow simulation: review, comparison, and validation. In: Proceedings of Europec/EAGE Conference and Exhibition, 9-12 June 2008, Rome, SPE-113890 (2008)

Abushaikha, A., Terekhov, K.: Hybrid-mixed mimetic method for reservoir simulation with full tensor permeability. In: ECMOR XVI - 16th European Conference on the Mathematics of Oil Recovery (2018)

Abushaikha, A.S., Blunt, M.J., Gosselin, O.R., Pain, C.C., Jackson, M.D.: Interface control volume finite element method for modelling multi-phase fluid flow in highly heterogeneous and fractured reservoirs. J. Comput. Phys. 298, 41–61 (2015)

Abushaikha, A.S., Terekhov, K.M.: A fully implicit mimetic finite difference scheme for general purpose subsurface reservoir simulation with full tensor permeability. J. Comput. Phys. 406, 109194 (2020)

Abushaikha, A.S., Voskov, D.V., Tchelepi, H.A.: Fully implicit mixed-hybrid finite-element discretization for general purpose subsurface reservoir simulation. J. Comput. Phys. 346, 514–538 (2017)

Ahmed, R., Xie, Y., Edwards, M.G.: A cell-centred cvd-mpfa finite volume method for two-phase fluid flow problems with capillary heterogeneity and discontinuity. Transp. Porous Media 127(1), 35–52 (2019)

Baliga, B.R., Patankar, S.V.: A new finite-element formulation for convection-diffusion problems. Numer. Heat Transf. Part B Fundam. 3(4), 393–409 (1980)

Bastian, P., Helmig, R.: Efficient fully-coupled solution techniques for two-phase flow in porous media. Adv. Water Resour. 23(3), 199–216 (1999)

Bazar-Afkan, S., Matthai, S.: A new hybrid simulation method for multiphase flow on unstructured grids with discrete representations of matrial interfaces. IAMG (2011)

Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)

Chen, Z., Ewing, R.E.: From single-phase to compositional flow: applicability of mixed finite elements. Transp. Porous Media 27(2), 225–242 (1997)

Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc.49, 1–23 (1943)

Darcy, H.: Les Fontaines Publiques de la Ville De Dijon. Elsevier Butterworth–Heinemann, Oxford (1856)

Durlofsky, L.J.: A triangle based mixed finite-element-finite volume technique for modelling two phase flow through porous media. J. Comput. Phys. 105, 252–266 (1993)

Edwards, M.G.: Higher-resolution hyperbolic-coupled-elliptic flux-continuous cvd schemes on structured and unstructured grids in 2-d. Int. J. Numer. Methods Fluids 51(9–10), 1059–1077 (2006)

Eymard, R., Sonier, F.: Mathematical and numerical properties of control-volumel finite-element scheme for reservoir simulation. SPE Reserv. Eng. 9(04), 283–289 (1994)

Fanchi, J.R.: Principles of Applied Reservoir Simulation. Gulf Professional Publishing, Houston, 4 edn. (2018)

Forsyth, P.A.: A control volume finite element approach to napl groundwater contamination. SIAM J. Sci. Stat. Comput. 12(5), 10291057 (1991)

Fung, L., Hieben, A., Nshiera, L.: Reservoir simulation with a control volume finite-element method. SPE Reserv. Eng. 7, 349–357 (1991)

Geiger, S., Roberts, S., Matthai, S., Zoppou, C., Burri, A.: Combining finite element and finite volume methods for efficient multiphase flow simulation in highly heterogenous and sturcturally complex geological media. Geofluids 4(4), 284–299 (2004)

Geiger, S., Roberts, S., Matthi, S.K., Zoppou, C., Burri, A.: Combining finite element and finite volume methods for efficient multiphase flow simulations in highly heterogeneous and structurally complex geologic media. Geofluids 4(4), 284299 (2004)

Geuzaine, C., Remacle, J.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)

Huber, R., Helmig, R.: Multi-phase flow in heterogeneous porous media: A classical finite element method versus an implicit pressure- explicit saturation- based mixed finite element- fintie volume approach. Int. J. Numer. Methods Fluids29, 899–920 (1999)

Huyakorn, P.S., Pinder, G.F.: Computational Methods in Subsurface Flow. Elsevier Science, Amsterdam (2014)

Istok, J.D.: Groundwater Modeling by the Finite Element Method. American Geophysical Union, Washington (2010)

Jackson, M., Gomes, J., Mostaghimi, P., Percival, J., Tollit, B., Pavlidis, D., Pain, C., El-Sheikh, A., Muggeridge, A., Blunt, M.: Reservoir modeling for flow simulation using surfaces, adaptive unstructured meshes, and control-volume-finite-element methods. In: SPE Reservoir Simulation Symposium (2013)

Janicke, L., Kost, A.: Error estimation and adaptive mesh generation in the 2d and 3d finite element method. Trans. Magn. 32, 1334–1337 (1996)

Khoei, A., Haghighat, E.: Extended finite element modeling of deformable porous media with arbitrary interfaces. Appl. Math. Modell. 35(11), 5426–5441 (2011)

Li, L., Khait, D., Voskov, M. Abushaikhaa, A.: Parallel framework for complex reservoir simulation with advanced discretization and linearization schemes. SPE EAGE EUROPEC (2020)

Mello, U.T., Rodrigues, J.R.P., Rossa, A.L.: A control-volume finite-element method for three-dimensional multiphase basin modeling. Mar. Pet. Geol.26(4), 504–518 (2009)

Monteagudo, J.E.P., Firoozabadi, A.: Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media. Water Resour. Res.40(7), (2004)

Nardean, S., Ferronato, M., Abushaikha, A.: A novel and efficient preconditioner for solving lagrange multipliers-based discretization schemes for reservoir simulations. 2020(1):1–12, (2020)

Nick, H., Matthai, S.: A hybrid finite-element finite-volume method with embedded discontinuities for solute transport in heterogenous media. Vadose Zone J. 10, 299–312 (2011)

Paluszny, A., Matthai, S.K., Homeyer, M.: Hybrid finite element–finite volume discretization of complex geologic structures and a new simulation workflow demonstrated on fractured rocks. Geofluids 7(2), 186–208 (2007)

Sadrnejad, S.A., Ghasemzadeh, H., Ghoreishian Amiri, S.A., Montazeri, G.H.: A control volume based finite element method for simulating incompressible two-phase flow in heterogeneous porous media and its application to reservoir engineering. Pet. Sci. 9(4), 485–497 (2012)

Salinas, P., Pavlidis, D., Xie, Z., Osman, H., Pain, C.C., Jackson, M.D.: A discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media. J. Comput. Phys. 352, 602–614 (2018)

Schmid, K., Geiger, S., Sorbie, K.: Higher order fe-fv method on unstructured grids for transport and two-phase flow with variable viscosity in heterogeneous porous media. J. Comput. Phys. 241, 416–444 (2013)

Schneider, G.E., Raw, M.J.: A skewed, positive influence coefficient up-winding procedure for control volume based finite element convection-diffusion computation. Numer. Heat Transf. 9(1), 1–26 (1986)

Stefansson, I., Berre, I., Keilegavlen, E.: Finite-volume discretisations for flow in fractured porous media. Transp. Porous Media 124(2), 439–462 (2018)

Vermuelen, J.: Numerical simulation of edge water drive with well effect by galerkin’s method. Fall Meeting of the Society of Petroleum Engineers of AIME (1973)

Xia, K., Zhang, Z.: Three-dimensional finite/infinite elements analysis of fluid flow in porous media. Appl. Math. Model. 30(9), 904–919 (2006)

Zhang, N., Abushaikha, A.S.: An efficient mimetic finite difference method for multiphase flow in fractured reservoirs. In: SPE Europec Featured at 81st EAGE Conference and Exhibition (2019)