On the Motion Planning Problem, Complexity, Entropy, and Nonholonomic Interpolation

Springer Science and Business Media LLC - Tập 12 Số 3 - Trang 371-404 - 2006
Jean-Paul Gauthier1, V. M. Zakalyukin2
1LE2I, UMR CNRS 5158, Universit'e de Bourgogne, Dijon CEDEX, France
2Moscow State University, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

1. A. A. Agrachev, H. E. A. Chakir, and J. P. Gauthier, Sub-Riemannian metrics on ℝ3. In: Geometric Control and Nonholonomic Mechanics, Mexico City (1996), pp. 29–76. Proc. Can. Math. Soc. 25 (1998).

2. A. A. Agrachev and J. P. Gauthier, Sub-Riemannian metrics and isoperimetric problems in the contact case. J. Math. Sci. 103 (2001), No. 6, 639–663.

3. G. Charlot, Quasicontact SR metrics: normal form in ℝ2n, wave front and caustic in ℝ4. Acta Appl. Math. 74 (2002), No. 3, 217–263.

4. H. E. A. Chakir, J. P. Gauthier, and I. A. K. Kupka, Small sub-Riemannian balls on ℝ3. J. Dynam. Control Systems 2 (1996), No. 3, 359–421.

5. F. H. Clarke, Optimization and nonsmooth analysis. John Wiley & Sons (1983).

6. J. P. Gauthier, F. Monroy-Perez, and C. Romero-Melendez, On complexity and motion planning for corank one SR metrics. ESAIM Control Optim. Calc. Var. 10 (2004), 634–655.

7. J. P. Gauthier and V. Zakalyukin, On the codimension one motion planning problem. J. Dynam. Control Systems 11 (2005), No. 1, 73–89.

8. ———, On the one-step bracket-generating motion planning problem. J. Dynam. Control Systems 11 (2005), No. 2, 215–235.

9. ———, Robot motion planning, a wild case. To appear in Proc 2004 Suszdal Conf. on Dynam. Systems (2006).

10. M. Gromov, Carnot-Caratheodory spaces seen from within. Prog. Math. 144 (1996), 79–323.

11. F. Jean, Complexity of nonholonomic motion planning. Int. J. Control 74 (2001), No. 8, 776–782.

12. ———, Entropy and complexity of a path in SR geometry. ESAIM Control Optim. Calc. Var. 9 (2003), 485–506.

13. F. Jean and E. Falbel, Measures and transverse paths in SR geometry. J. Anal. Math. 91 (2003), 231–246.

14. A. E. H. Love, A treatise on the mathematical theory of elasticity. Dover, New York (1944).

15. Mathematica®, Reference manual. France (1997).

16. L. Pontryagin, V. Boltyanski, R. Gamkelidze, and E. Michenko, The mathematical theory of optimal processes. Wiley, New York (1962).