On the Mass Concentration for Bose–Einstein Condensates with Attractive Interactions

Yujin Guo1, Robert Seiringer2
1Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010, Wuhan, 430071, People’s Republic of China
2IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams R.A., Fournier J.J.F.: Sobolev spaces, 2nd edn. Academic Press, New York (2003)

Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

Aschbacher W.H., Fröhlich J., Graf G.M., Schnee K., Troyer M.: Symmetry breaking regime in the nonlinear Hartree equation. J. Math. Phys. 43, 3879–3891 (2002)

Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1995) (Erratum in: Phys. Rev. Lett. 79, 1170 (1997))

Bradley C.C., Sackett C.A., Hulet R.G.: Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985 (1997)

Byeon J., Wang Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10. Courant Institute of Mathematical Science/AMS, New York (2003)

Cooper N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)

Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

Davis K.B., Mewes M.O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

Fetter A.L.: Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)

Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

Gidas B., Ni W.M., Nirenberg L.: Symmetry of positive solutions of nonlinear elliptic equations in $${\mathbb{R}^n}$$ R n , Mathematical analysis and applications Part A, Adv. in Math. Suppl. Stud., vol. 7, pp. 369–402. Academic Press, New York (1981)

Gross E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–466 (1961)

Gross E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207 (1963)

Guo, Y.J., Zeng, X.Y., Zhou, H.S.: Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials (2013, preprint)

Huepe C., Metens S., Dewel G., Borckmans P., Brachet M.E.: Decay rates in attractive Bose–Einstein condensates. Phys. Rev. Lett. 82, 1616–1619 (1999)

Jackson R.K., Weinstein M.I.: Geometric analysis of bifurcation and symmetry breaking in a Gross–Pitaevskii equation. J. Stat. Phys. 116, 881–905 (2004)

Kagan Y., Muryshev A.E., Shlyapnikov G.V.: Collapse and Bose–Einstein condensation in a trapped Bose gas with negative scattering length. Phys. Rev. Lett. 81, 933–937 (1998)

Kirr E.W., Kevrekidis P.G., Shlizerman E., Weinstein M.I.: Symmetry-breaking bifurcation in nonlinear Schrödinger/Gross–Pitaevskii equations. SIAM J. Math. Anal. 40, 566–604 (2008)

Kirr E.W., Kevrekidis P.G., Pelinovsky D.E.: Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials. Commun. Math. Phys. 308(3), 795–844 (2011)

Kwong M.K.: Uniqueness of positive solutions of $${\Delta u - u + u ^p = 0}$$ Δ u - u + u p = 0 in $${\mathbb{R}^N}$$ R N . Arch. Ration. Mech. Anal. 105, 243–266 (1989)

Levine H.A.: An estimate for the best constant in a Sobolev inequality involving three integral norms. Ann. Math. Pura Appl. 124, 181–197 (1980)

Li Y., Ni W.M.: Radial symmetry of positive solutions of nonlinear elliptic equations in $${\mathbb{R}^n}$$ R n . Commun. Partial Differ. Equ. 18, 1043–1054 (1993)

Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. Amer. Math. Soc., Providence (2001)

Lieb E.H., Seiringer R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409-1–4 (2002)

Lieb E.H., Seiringer R., Solovej J.P., Yngvason J.: The mathematics of the Bose gas and its condensation, Oberwolfach Seminars 34. Birkhäuser Verlag, Basel (2005)

Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602-1–13 (2000)

Lieb E.H., Seiringer R., Yngvason J.: A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys. 224, 17–31 (2001)

Maeda M.: On the symmetry of the ground states of nonlinear Schrödinger equation with potential. Adv. Nonlinear Stud. 10, 895–925 (2010)

McLeod K., Serrin J.: Uniqueness of positive radial solutions of $${\Delta u + f(u) =0}$$ Δ u + f ( u ) = 0 in $${\mathbb{R}^n}$$ R n . Arch. Ration. Mech. Anal. 99, 115–145 (1987)

Oh Y.-G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131, 223–253 (1990)

Pitaevskii L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

Rose H.A., Weinstein M.I.: On the bound states of the nonlinear Schrödinger equation with a linear potential. Phys. D 30, 207–218 (1988)

Sackett C.A., Stoof H.T.C., Hulet R.G.: Growth and collapse of a Bose–Einstein condensate with attractive interactions. Phys. Rev. Lett. 80, 2031 (1998)

Wang X.F.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

Weinstein M.I.: Nonlinear Schrödinger equations and sharp interpolations estimates. Commun. Math. Phys. 87, 567–576 (1983)

Yukalov V.I., Yukalova E.P.: Optimal trap shape for a Bose gas with attractive interactions. Phys. Rev. A 72, 063611 (2005)

Zhang J.: Stability of attractive Bose–Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)