On the Mass Concentration for Bose–Einstein Condensates with Attractive Interactions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams R.A., Fournier J.J.F.: Sobolev spaces, 2nd edn. Academic Press, New York (2003)
Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)
Aschbacher W.H., Fröhlich J., Graf G.M., Schnee K., Troyer M.: Symmetry breaking regime in the nonlinear Hartree equation. J. Math. Phys. 43, 3879–3891 (2002)
Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)
Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1995) (Erratum in: Phys. Rev. Lett. 79, 1170 (1997))
Bradley C.C., Sackett C.A., Hulet R.G.: Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985 (1997)
Byeon J., Wang Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)
Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10. Courant Institute of Mathematical Science/AMS, New York (2003)
Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)
Davis K.B., Mewes M.O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)
Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)
Gidas B., Ni W.M., Nirenberg L.: Symmetry of positive solutions of nonlinear elliptic equations in $${\mathbb{R}^n}$$ R n , Mathematical analysis and applications Part A, Adv. in Math. Suppl. Stud., vol. 7, pp. 369–402. Academic Press, New York (1981)
Guo, Y.J., Zeng, X.Y., Zhou, H.S.: Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials (2013, preprint)
Huepe C., Metens S., Dewel G., Borckmans P., Brachet M.E.: Decay rates in attractive Bose–Einstein condensates. Phys. Rev. Lett. 82, 1616–1619 (1999)
Jackson R.K., Weinstein M.I.: Geometric analysis of bifurcation and symmetry breaking in a Gross–Pitaevskii equation. J. Stat. Phys. 116, 881–905 (2004)
Kagan Y., Muryshev A.E., Shlyapnikov G.V.: Collapse and Bose–Einstein condensation in a trapped Bose gas with negative scattering length. Phys. Rev. Lett. 81, 933–937 (1998)
Kirr E.W., Kevrekidis P.G., Shlizerman E., Weinstein M.I.: Symmetry-breaking bifurcation in nonlinear Schrödinger/Gross–Pitaevskii equations. SIAM J. Math. Anal. 40, 566–604 (2008)
Kirr E.W., Kevrekidis P.G., Pelinovsky D.E.: Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials. Commun. Math. Phys. 308(3), 795–844 (2011)
Kwong M.K.: Uniqueness of positive solutions of $${\Delta u - u + u ^p = 0}$$ Δ u - u + u p = 0 in $${\mathbb{R}^N}$$ R N . Arch. Ration. Mech. Anal. 105, 243–266 (1989)
Levine H.A.: An estimate for the best constant in a Sobolev inequality involving three integral norms. Ann. Math. Pura Appl. 124, 181–197 (1980)
Li Y., Ni W.M.: Radial symmetry of positive solutions of nonlinear elliptic equations in $${\mathbb{R}^n}$$ R n . Commun. Partial Differ. Equ. 18, 1043–1054 (1993)
Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. Amer. Math. Soc., Providence (2001)
Lieb E.H., Seiringer R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409-1–4 (2002)
Lieb E.H., Seiringer R., Solovej J.P., Yngvason J.: The mathematics of the Bose gas and its condensation, Oberwolfach Seminars 34. Birkhäuser Verlag, Basel (2005)
Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602-1–13 (2000)
Lieb E.H., Seiringer R., Yngvason J.: A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys. 224, 17–31 (2001)
Maeda M.: On the symmetry of the ground states of nonlinear Schrödinger equation with potential. Adv. Nonlinear Stud. 10, 895–925 (2010)
McLeod K., Serrin J.: Uniqueness of positive radial solutions of $${\Delta u + f(u) =0}$$ Δ u + f ( u ) = 0 in $${\mathbb{R}^n}$$ R n . Arch. Ration. Mech. Anal. 99, 115–145 (1987)
Oh Y.-G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131, 223–253 (1990)
Pitaevskii L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)
Rose H.A., Weinstein M.I.: On the bound states of the nonlinear Schrödinger equation with a linear potential. Phys. D 30, 207–218 (1988)
Sackett C.A., Stoof H.T.C., Hulet R.G.: Growth and collapse of a Bose–Einstein condensate with attractive interactions. Phys. Rev. Lett. 80, 2031 (1998)
Wang X.F.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)
Weinstein M.I.: Nonlinear Schrödinger equations and sharp interpolations estimates. Commun. Math. Phys. 87, 567–576 (1983)
Yukalov V.I., Yukalova E.P.: Optimal trap shape for a Bose gas with attractive interactions. Phys. Rev. A 72, 063611 (2005)