On the Markov Inequality in the $$L_2$$ L 2 -Norm with the Gegenbauer Weight
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aleksov, D., Nikolov, G., Shadrin, A.: On the Markov inequality in the $$L_2$$ L 2 norm with the Gegenbauer weight. J. Approx. Theory 208, 9–20 (2016)
Bojanov, B.: Markov-type inequalities for polynomials and splines. In: Chui, C.K., Schumaker, L.L., Stoeckler, J. (eds.) Approximation Theory X. Abstract and Classical Analysis, pp. 31–90. Vanderbilt University Press, Vanderbilt (2002)
Böttcher, A.: Best constants for Markov type inequalities in Hilbert space norms. In: Recent Trends in Analysis, Proceedings of the Conference in Honor of Nikolai Nikolski, Bordeaux 2011, pp. 73–83, Theta, Bucharest (2013)
Böttcher, A., Dörfler, P.: Weighted Markov-type inequalities, norms of Volterra operators, and zeros of Bessel functions. Math. Nachr. 283, 357–367 (2010)
Böttcher, A., Dörfler, P.: On the best constant in Markov-type inequalities involving Gegenbauer norms with different weights. Oper. Matr. 161, 40–57 (2010)
Böttcher, A., Dörfler, P.: On the best constant in Markov-type inequalities involving Laguerre norms with different weights. Monatsh. Math. 5, 261–272 (2011)
Dörfler, P.: Asymptotics of the best constant in a certain Markov-type inequality. J. Approx. Theory 114, 84–97 (2002)
Konyagin, S.: Estimates for derivatives of polynomials. Dokl. Akad. Nauk SSSR 243, 1116–1118 (1978). (Russian)
Kroó, A.: On the exact constant in the $$L_2$$ L 2 Markov inequality. J. Approx. Theory 151, 208–211 (2008)
Markov, A.A.: On a question of D.I. Mendeleev. Zapiski Petersb. Akad. Nauk 62, 1–24 (1889) (in Russian). Available also at: http://www.math.technion.ac.il/hat/fpapers/mar1.pdf
Markov, V.A.: On functions which deviate least from zero in a given interval, Saint-Petersburg University (1892) (in Russian)
German translation: Math. Ann. 77, 213-258 (1916). Available also at: http://www.math.technion.ac.il/hat/fpapers/vmar.pdf
Milovanović, G.V., Mitrinović, D.S., Rassias, ThM: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific, Singapore (1994)
Nikolov, G.: Markov-type inequalities in the $$L_2$$ L 2 -norms induced by the Tchebycheff weights. Arch. Inequal. Appl. 1(3–4), 361–375 (2003)
Nikolov, G., Shadrin, A.: On the $$L_2$$ L 2 Markov inequality with Laguerre weight. In: Govil, N.K., et al. (eds.) Progress in Approximation Theory and Applicable Complex Analysis. Springer Optimization and Its Applications, vol. 117, pp. 1–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49242-1_1
Nikolov, G., Shadrin, A.: Markov $$L_2$$ L 2 –inequality with the Laguerre weight. arXiv:1705.03824v1 [math.CA]
Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. Clarendon Press, Oxford (2002)
Schmidt, E.: Über die nebst ihren Ableitungen orthogonalen Polynomensysteme und das zugehörige Extremum. Math. Ann. 119, 165–204 (1944). (in German)
Shadrin, A.: Twelve proofs of the Markov inequality. In: Dimitrov, D.K., Nikolov, G., Uluchev, R. (eds.), Approximation Theory: A volume dedicated to Borislav Bojanov, pp. 233–298. Professor Marin Drinov Academic Publishing House, Sofia (2004). Available also at: http://www.damtp.cam.ac.uk/user/na/people/Alexei/papers/markov.pdf
Turán, P.: Remark on a theorem of Ehrhard Schmidt. Mathematica (Cluj) 2, 373–378 (1960)