On the Lovász theta function and some variants

Discrete Optimization - Tập 25 - Trang 159-174 - 2017
Laura Galli1, Adam N. Letchford2
1Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
2Department of Management Science, Lancaster University Management School, Lancaster LA1 4YX, United Kingdom

Tài liệu tham khảo

Håstad, 1999, Clique is hard to approximate within n1−ϵ, Acta Math., 182, 105, 10.1007/BF02392825 Lovász, 1979, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, 25, 1, 10.1109/TIT.1979.1055985 Grötschel, 1981, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1, 169, 10.1007/BF02579273 Feige, 1998, Zero-knowledge and the chromatic number, J. Comput. System Sci., 57, 187, 10.1006/jcss.1998.1587 Grötschel, 1988 Lovász, 1991, Cones of matrices and set-functions and 0–1 optimization, SIAM J. Optim., 1, 166, 10.1137/0801013 Gruber, 2003, Computational experience with stable set relaxations, SIAM J. Optim., 13, 1014, 10.1137/S1052623401394092 Yildirim, 2006, On extracting maximum stable sets in perfect graphs using Lovász’s theta function, Comput. Optim. Appl., 33, 229, 10.1007/s10589-005-3060-5 Dukanovic, 2007, Semidefinite programming relaxations for graph coloring and maximal clique problems, Math. Program., 109, 345, 10.1007/s10107-006-0026-z Giandomenico, 2006, Exploring the relationship between max-cut and stable set relaxations, Math. Program., 106, 159, 10.1007/s10107-005-0604-5 Schrijver, 1979, A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inform. Theory, IT-25, 425, 10.1109/TIT.1979.1056072 Lieder, 2015, Unifying semidefinite and set-copositive relaxations of binary problems and randomization techniques, Comput. Optim. Appl., 61, 669, 10.1007/s10589-015-9731-y Padberg, 1973, On the facial structure of set packing polyhedra, Math. Program., 5, 199, 10.1007/BF01580121 Borndörfer, 1998 Balas, 1996, Polyhedral methods for the maximum clique problem Burer, 2006, Solving lift-and-project relaxations of binary integer programs, SIAM J. Optim., 16, 726, 10.1137/040609574 Giandomenico, 2009, An application of the Lovász–Schrijver M(K,K) operator to the stable set problem, Math. Program., 120, 381, 10.1007/s10107-008-0219-8 Giandomenico, 2013, Strong lift-and-project cutting planes for the stable set problem, Math. Program., 141, 165, 10.1007/s10107-012-0513-3 Nemhauser, 1992, A strong cutting-plane/branch-and-bound algorithm for node packing, J. Oper. Res. Soc. Japan, 43, 443, 10.1057/jors.1992.71 Rebennack, 2011, A branch and cut solver for the maximum stable set problem, J. Comb. Optim., 21, 434, 10.1007/s10878-009-9264-3 Rossi, 2001, A branch-and-cut algorithm for the maximum cardinality stable set problem, Oper. Res. Lett., 28, 63, 10.1016/S0167-6377(00)00060-2 Laurent, 2001, A comparison of the Sherali–Adams, Lovász–Schrijver and Lasserre relaxations for 0–1 programming, Math. Oper. Res., 28, 470, 10.1287/moor.28.3.470.16391 Padberg, 1989, The Boolean quadric polytope: some characteristics, facets and relatives, Math. Program., 45, 139, 10.1007/BF01589101 Deza, 1997 Erdös, 1959, On random graphs, Publ. Mat., 6, 290 Borchers, 1999, CSDP, a C library for semidefinite programming, Optim. Methods Softw., 11, 613, 10.1080/10556789908805765