On the Lovász theta function and some variants
Tài liệu tham khảo
Håstad, 1999, Clique is hard to approximate within n1−ϵ, Acta Math., 182, 105, 10.1007/BF02392825
Lovász, 1979, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, 25, 1, 10.1109/TIT.1979.1055985
Grötschel, 1981, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1, 169, 10.1007/BF02579273
Feige, 1998, Zero-knowledge and the chromatic number, J. Comput. System Sci., 57, 187, 10.1006/jcss.1998.1587
Grötschel, 1988
Lovász, 1991, Cones of matrices and set-functions and 0–1 optimization, SIAM J. Optim., 1, 166, 10.1137/0801013
Gruber, 2003, Computational experience with stable set relaxations, SIAM J. Optim., 13, 1014, 10.1137/S1052623401394092
Yildirim, 2006, On extracting maximum stable sets in perfect graphs using Lovász’s theta function, Comput. Optim. Appl., 33, 229, 10.1007/s10589-005-3060-5
Dukanovic, 2007, Semidefinite programming relaxations for graph coloring and maximal clique problems, Math. Program., 109, 345, 10.1007/s10107-006-0026-z
Giandomenico, 2006, Exploring the relationship between max-cut and stable set relaxations, Math. Program., 106, 159, 10.1007/s10107-005-0604-5
Schrijver, 1979, A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inform. Theory, IT-25, 425, 10.1109/TIT.1979.1056072
Lieder, 2015, Unifying semidefinite and set-copositive relaxations of binary problems and randomization techniques, Comput. Optim. Appl., 61, 669, 10.1007/s10589-015-9731-y
Padberg, 1973, On the facial structure of set packing polyhedra, Math. Program., 5, 199, 10.1007/BF01580121
Borndörfer, 1998
Balas, 1996, Polyhedral methods for the maximum clique problem
Burer, 2006, Solving lift-and-project relaxations of binary integer programs, SIAM J. Optim., 16, 726, 10.1137/040609574
Giandomenico, 2009, An application of the Lovász–Schrijver M(K,K) operator to the stable set problem, Math. Program., 120, 381, 10.1007/s10107-008-0219-8
Giandomenico, 2013, Strong lift-and-project cutting planes for the stable set problem, Math. Program., 141, 165, 10.1007/s10107-012-0513-3
Nemhauser, 1992, A strong cutting-plane/branch-and-bound algorithm for node packing, J. Oper. Res. Soc. Japan, 43, 443, 10.1057/jors.1992.71
Rebennack, 2011, A branch and cut solver for the maximum stable set problem, J. Comb. Optim., 21, 434, 10.1007/s10878-009-9264-3
Rossi, 2001, A branch-and-cut algorithm for the maximum cardinality stable set problem, Oper. Res. Lett., 28, 63, 10.1016/S0167-6377(00)00060-2
Laurent, 2001, A comparison of the Sherali–Adams, Lovász–Schrijver and Lasserre relaxations for 0–1 programming, Math. Oper. Res., 28, 470, 10.1287/moor.28.3.470.16391
Padberg, 1989, The Boolean quadric polytope: some characteristics, facets and relatives, Math. Program., 45, 139, 10.1007/BF01589101
Deza, 1997
Erdös, 1959, On random graphs, Publ. Mat., 6, 290
Borchers, 1999, CSDP, a C library for semidefinite programming, Optim. Methods Softw., 11, 613, 10.1080/10556789908805765