Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu về mô đun đàn hồi của đất sét vàng nhiệt đới còn lại từ Senegal (Tây Phi)
Tóm tắt
Các nghiên cứu về hành vi cơ học của đất sét vàng có độ nén cao đã là chủ đề của nhiều nghiên cứu. Được sử dụng như vật liệu đường bộ, các bài kiểm tra đất chủ yếu được thực hiện bằng cách sử dụng các bài kiểm tra tiêu chuẩn. Tải trọng tĩnh như bài kiểm tra nén không bị hạn chế (UCT) vẫn là phương pháp kỹ thuật duy nhất được sử dụng. Các kỹ thuật thử nghiệm thay thế có thể được chọn làm bài kiểm tra bổ sung để đặc trưng hóa vật liệu mặt đường. Những nghiên cứu này được thực hiện nhằm xác định phản ứng của các loại đất đặc biệt và có vấn đề này trong dạng nén với tải trọng giao thông đường bộ. Bài báo này trình bày kết quả nghiên cứu được thực hiện để điều tra ảnh hưởng của độ nén của đất lên mô đun đàn hồi của đất sét vàng. Ảnh hưởng của tỷ lệ phần trăm xi măng thêm vào để ổn định từng mẫu tại trạng thái Proctor sửa đổi tối ưu (OPM) cũng đã được xác định. Các mẫu đất có đường kính khoảng 180 mm (với tỷ lệ chiều dài trên đường kính là 2:1) đã được chuẩn bị theo quy trình tiêu chuẩn được mô tả bởi AASHTO T 307 và sau đó được chịu tác động của các bài kiểm tra triaxial tải lặp lại. Các mô hình được sử dụng, phân tích và phát triển trong bài báo này chủ yếu là mô hình vũ trụ Andrei và Uzan–Witczak. Kết quả thử nghiệm cho thấy độ nén của mẫu không có ảnh hưởng đáng kể đến mô đun đàn hồi của các loại đất sét vàng đã được nghiên cứu. Các mẫu đất với sự biến thiên của tỷ lệ phần trăm xi măng thêm vào đã thể hiện giá trị mô đun đàn hồi cao nhất trong khi các mẫu với sự thay đổi của độ nén cho thấy các giá trị thấp nhất. Sự biến động của mô đun đàn hồi dường như độc lập với mức độ ứng suất.
Từ khóa
Tài liệu tham khảo
AASHTO (1986) Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials, Washington, DC
AASHTO (1993) Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials, Washington, DC
AASHTO T292-97 (2000) Test procedure for Resilient Modulus of Unbound Materials. American Association of State Highway and Transportation Officials, Washington, DC
AASHTO (2002) Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials, Washington, DC
AASHTO T 307 (2003) Determining the Resilient Modulus of Soils and Aggregate Materials. American Association of State Highway and Transportation Officials, Washington, DC
AASHTO T 99 (2001) Standard Method of Test for the Moisture-Density Relations of Soils. American Association of State Highway and Transportation Officials, Washington, DC
Andrei D (1999) Development of a Harmonized Test Protocol for the Resilient Modulus of Unbound Materials Used in Pavement Design, MS Thesis, University of Maryland—College Park
Barksdale RD (1972) Repeated load testing evaluation of base course materials, GHD research Project 7002, final report. FHWA, US Department of Transportation, 1972
BCEOM-CEBTP (1984) Manuel sur les routes dans les pays tropicaux et désertiques—Tome 1, 2 et 3. Ed. Min. Français Coop. Et Dév
Brown SF, Pappin JW (1981) Analysis of Pavements with Granular Bases, Transportation Research Record, Transportation Research Board, National Research Council, Washington, DC, pp 17–23
Chen HH, Marshek KM, Saraf CL (1986) Effects of truck tire contact pressure distribution on the design of flexible pavements: a three-dimensional finite element approach. Transport Res Rec 1095:72–78
Chen D-H, Zaman M, Laguros J, Soltani A (1995) Assessment of computer programs for analysis of flexible pavement structure. Transport Res Rec 1482:123–133
Dai S, Van Deusen D (1998) Field study of in situ subgrade soil response under flexible pavement. Transport Res Rec 1639:23–35
de Pont J, Thakur K, Pidwerbesky B, Steven B (2004) Validating a whole life pavement performance model. Transit New Zealand, CAPTIF Research Facility, 15
Dyvik R, Madshus C (1985) Lab measurements of Gmax using bender elements. Proceedings of the advances in the art of testing soil under cyclic conditions, ASCE, Detroit, MI, 186–196
Fall M (1993) Identification et caractéristiques mécaniques de graveleux latéritiques du Sénégal. Application au domaine routier. Thèse de Doctorat en Génie Civil & Minier à l’INPL-ENSG, p 273, et Annexes;Nancy (France)
Fall M, Tisot J-P (1994) Specifications for road design using statistical data. An example of laterite or gravel lateritic soils from Senegal. Publié par l’AIGI (Géologie de l’Ingénieur), Bull. AIGI N°50 (Paris 1994)
Fall M, Tisot J-P (1995) Comportement mécanique à l’appareil de cisaillement de Casagrande de trois graveleux latéritiques compactés provenant du Sénégal Occidental. Publié par l’AIGI (Géologie de l’Ingénieur), Bull. AIGI N°52 (Paris 1995)
Fall M, Tisot J-P (1996) Undrained behaviour of compacted gravel lateritic soils from the western part of Senegal under monotonic and cyclic triaxial loading. Eng Geol 47(1997):71–87
Fall M, Senghor B, Lakhoune A (2002a) Analyse de la pratique du dimensionnement rationnel des structures de chaussées au Sénégal. Influence des paramètres d’entrée dans les codes de calcul pour le renforcement des chaussées. Annales du Batiment et des Travaux Publics, N° 1/02 (1/9)
Fall M, Paye F, Mbodji A (2002b) Current knowledge and research results for the design of flexible pavements in Senegal, EJGE, 2002
Fam M, Santamarina JC (1995) Study of geoprocesses with complementary wave measurements in an oedometer. Geotech Testing J 18(3):307–314
Fioravante V, Capoferri R (2001) On the use of multi-directional piezoelectric transducers in triaxial testings. Geotech Testing J 24(3):243–255
Hardy MSA, Cebon D (1993) Response of continuous pavements to moving dynamic loads. J Eng Mech, ASCE 119(9):1762–1780
Helwany S, Dyer J, Leidy J (1998) Finite-element analyses of flexible pavements. J Transport Eng, ASCE 124(5):491–499
Hicks RG, Monismith CL (1971) Factors influencing the relient properties of granular materials. Highway research record 345, Highway Research Board, Washington, DC pp 15–31
Hjelmstad KD, Taciroglu E (in press) Analysis and implementation of resilient modulus models for granular soils, J Eng Mech, ASCE
Huang YH (2004) Pavement analysis and design. Pearson Prentice Hall, Upper Saddle River, NJ
Jardine RJ, Potts DM, Fourie AB, Burland JB (1986) Studies of the influence of non-linear stress–strain characteristics in soil-structure interaction. Geotechnique 36(3):377–396
Jardine RJ, Potts DM (1988) Hutton tension platform foundation: an approach to the prediction of pile behavior. Geotechnique 38(2):231–252
Kim D-S, Stokoe KH II (1992) Characterization of resilient modulus of compacted subgrade soils using resonant column and torsional shear tests. Transport Res Rec 1369:83–91
Kim D-S, Kweon G-C, Lee K-H (1997) Alternative method of determining resilient modulus of compacted subgrade soils using free-free resonant column test. Transport Res Rec 1577:62–69
Lytton RL, Uzan J, Fernando EG, Roque R, Hiltunen DR, Stoffels SM (1993) Development and validation of performance prediction models and specifications for asphalt binders and paving mixtures. Report No. SHRP-A-357, Transportation Research Board, National Research Council, Washington, DC
Mancuso C, Vassallo R, d’Onofrio A (2002) Small strain behavior of a silty sand in controlled-suction resonant column-torsional shear tests. Can Geotech J 39(1):22–31
Marsh JG, Jewell RJ (1994) Vertical pavement strain as means of weighing vehicles. J Transport Eng, ASCE 120(4):617–632
May RW, Witczak MW (1981) Effective granular modulus to model pavement responses. In: Transportation research record 810, TRB, National Research Concil, Washington, DC, pp 1–9
NCHRP (2000) Harmonized test methods for laboratory determination of resilient modulus for flexible pavement design, vol 1, Unbound Granular Material, NCHRP Project 1–28a Draft Report, p 198
NCHRP Project 1–37A (2002) Summary of the 2002 AASHTO guide for the design of new and rehabilitated pavement structures. NCHRP, Washington, DC
NCHRP (2004) NCHRP Project 1–37A Design guide, mechanistic-empirical design of new and rehabilitated pavement structures, http://www.trb.org/mepdg/. NCHRP, Washington, DC
Pennington DS, Nash DFT, Lings ML (2001) Horizontally mounted bender elements for measuring anisotropic shear moduli in triaxial clay specimens. Geotech Testing J 24(2):133–144
Pidwerbesky BD (1995) Strain response and performance of subgrades and flexible pavements under various loading conditions. Transport Res Rec 1482:87–93
Saleh MF, Steven B, Alabaster D (2003) Three-dimensional nonlinear finite element model for simulating pavement response: study at Canterbury accelerated pavement testing indoor facility, New Zealand. Transport Res Rec 1823:153–162
Sawangsuriya A, Edil TB, Bosscher PJ (2003) Relationship between soil stiffness gauge modulus and other test moduli for granular soils. Transport Res Rec 1849:3–10
Sawangsuriya A, Bosscher PJ, Edil TB (submitted) Application of the soil stiffness gauge in assessing small-strain stiffness of sand with different fabrics and densities. Geotech Testing J, ASTM
Sawangsuriya A, Biringen E, Fratta D, Bosscher PJ, Edil TB (2006) “Dimensionless limits for the collection and interpretation of wave propagation data in soils”. ASCE Geotechnical Special Publication (GSP): “Site and Geomaterial Characterization”. GeoShanghai Conference. Shanghai, China
Schwartz CW (2000) Effect of stress-dependent base layer on the superposition of two-dimensional flexible pavement solutions, proceedings, 2nd international conference on 3D finite elements for pavement analysis, design, and research, Charleston, WV, October, pp 329–354
Schwartz CW (2001) Implementation of a nonlinear resilient modulus constitutive model for unbound pavement materials, proceedings, 10th international conference on computer methods and advances in geomechanics, Tucson, AZ, January, pp 13851390
Seed HB, Idriss IM (1970) Soil moduli and damping factors for dynamic response analyses. Report EERC 70–10, Earthquake Engineering Research Center, University of California, Berkeley, CA
Shook JF, Finn FN, Witczak MW, Monismith CL (1982) Thickness design of asphalt pavement—the Asphalt Institute Methid. Presented at 5th international conference on the structural design of asphalt pavements, Delft, The Netherlands
Souto A, Hartikainen J, Özüdoğru K (1994) Measurement of dynamic parameters of road pavement materials by the bender element and resonant column tests. Geotechnique 44(3):519–526
Sun JI, Golesorkhi R, Seed HB (1988) Dynamic moduli and damping ratios for cohesive soils. Report EERC-88/15, Earthquake Engineering Research Center, University of California, Berkeley, CA
Tanyu BF, Kim WH, Edil TB, Benson CH (2003) Comparison of laboratory resilient modulus with back-calculated elastic moduli from large-scale model experiments and FWD tests on granular materials. Resilient Modulus Testing for Pavement Components, ASTM STP 1437, West Conshohocken, PA, pp 191–208
Tatsuoka F, Shibuya S (1991) Deformation characteristics of soils and rocks from field and laboratory tests. Proceedings of the 9th Asian regional conference on soil mech. and found. engrg., Bangkok, Thailand, vol 2. pp 101–170
Tatsuoka F, Siddiquee MS, Park CS, Sakamoto M, Abe F (1993) Modeling stress–strain relations of sand. Soils Found 33(2):60–81
Terzaghi K, Ralph BP (1948) Soil mechanics in engineering practice, Wiley, New York, The second edition by Ralph BP, 1967
Thomann TG, Hryciw RD (1990) Laboratory measurement of small strain shear modulus under Ko conditions. Geotech Testing J 13(2):97–105
Thompson MR (1990) NCHRP 1–26: Calibrated mechanistic structural analysis procedures for pavements. volume I—final report, prepared for the National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington, DC, March
Thompson MR, Garg N (1999) Wheel load interaction: critical airport pavement responses, COE Report No. 7, Center of Excellence for Airport Pavement Research, Department of Civil Engineering, University of Illinois at Urbana-Champaign, July
Tutumluer E (1995) Predicting behavior of flexible pavements with granular bases, PhD dissertation, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA
Tutumluer E, Little DN, Kim S-H (2003) Validated model for predicting field performance of aggregate base courses. Transp Res Rec 1837:41–49
Uzan J (1985) Characterization of granular material, transportation research record 1022, TRB, National Research Council, Washington, DC, pp 52–59
Uzan J (1991) SHRP Quarterly report: A-005 performance models and validation of test results. Quarter 2 of 4, of Year 2, Texas Transportation Institute, The Texas A&M University System, College Station, Texas, July 15
Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. J Geotech Eng, ASCE 117(1):89–107
Witczak MW, Uzan J (1988) The universal airport pavement design system. Report I of V: granular material characterization, Department of Civil Engineering, University of Maryland, College Park, MD
Yoder EJ, Witczak MW (1975) Principles of pavement design (2nd edn). Wiley, New York, NY
Zeng X, Ni B (1998) Application of bender elements in measuring Gmax of sand under Ko condition. Geotech Testing J 21(3):251–263