On the History of Unified Field Theories. Part II. (ca. 1930–ca. 1965)

Springer Science and Business Media LLC - Tập 17 - Trang 1-241 - 2014
Hubert F. M. Goenner1
1Institut für Theoretische Physik, University of Göttingen, Göttingen, Germany

Tóm tắt

The present review intends to provide an overall picture of the research concerning classical unified field theory, worldwide, in the decades between the mid-1930 and mid-1960. Main themes are the conceptual and methodical development of the field, the interaction among the scientists working in it, their opinions and interpretations. Next to the most prominent players, A. Einstein and E. Schrödinger, V. Hlavatý and the French groups around A. Lichnerowicz, M.-A. Tonnelat, and Y. Thiry are presented. It is shown that they have given contributions of comparable importance. The review also includes a few sections on the fringes of the central topic like Born-Infeld electromagnetic theory or scalar-tensor theory. Some comments on the structure and organization of research-groups are also made.

Tài liệu tham khảo

Abe, S. and Ikeda, M., “On groups of motions in space-time with a non-symmetric fundamental tensor gμν. I”, Tensor, New Ser., 10, 26–33, (1960). (Cited on page 160.) Abrol, M. L. and Mishra, R. S., “On the field equations of Bonnor’s unified theory”, Tensor, New Ser., 8, 14–20, (1958). (Cited on page 150.) Alfsen, E., “Schéma lagrangien de la théorie de l’électron de Flint”, C. R. Hebd. Seanc. Acad. Sci., 232, 699–701, (1951). [ARK]. (Cited on page 42.) Antonelli, P. L., Handbook of Finsler Geometry, Vols. 1 and 2, (Kluwer, Boston, 2003). (Cited on pages 12 and 176.) Arnowitt, R. L., “Phenomenological Approach to a Unified Field Theory”, Phys. Rev., 105, 735–742, (1957). [DOI]. (Cited on pages 101, 147, and 178.) Band, W., “On Flint’s Five-Dimensional Theory of the Electron”, Philos. Mag. (7), 29, 548–552, (1940). [DOI]. (Cited on page 42.) Bandyopadhyay, G., “Particular solutions of Einstein’s recent unified field theories”, Indian J. Phys., 25(5), 257–261 (1951). (Cited on pages 100 and 159.) Bandyopadhyay, G., “A strange feature of Einstein’s most recent generalized field theory”, Nature, 167, 648–649, (1951). [DOI]. (Cited on page 98.) Bandyopadhyay, G., “New Equation in the Affine Field Laws”, Phys. Rev., 89, 1161, (1953). [DOI]. (Cited on page 158.) Bandyopadhyay, G., “General Static Spherically Symmetric solution of the ‘Weaker’ Equations of Einstein’s Unified Theory”, Sci. Cult., 25, 427–428, (1960). (Cited on page 98.) Bandyopadhyay, G., “A Theorem on Spherically Symmetric Solutions in Unified Theory”, J. Math. Mech., 12, 655–662, (1963). (Cited on page 184.) Bargmann, V., “Relativity”, Rev. Mod. Phys., 29, 161–174, (1957). [DOI]. (Cited on pages 10 and 190.) Bass, L., “Schrödinger: A Philosopher in Planck’s Chair”, Brit. J. Phil. Sci., 43(1), 111–127 (1992). [DOI]. (Cited on page 71.) Becker, K., Becker, M. and Schwarz, J. H., String Theory and M-Theory: A Modern Introduction, (Cambridge University Press, Cambridge; New York, 2007). (Cited on page 195.) Belinfante, F. J., “On the spin angular momentum of mesons”, Physica, VI(9), 887–898 (1939). [DOI], [ADS]. (Cited on page 27.) Belinfante, F. J., “The undor equation of the meson field”, Physica, VI(9), 870–886 (1939). [DOI]. (Cited on page 27.) Belinfante, F. J., “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields”, Physica, 7, 449–474, (1940). [DOI]. (Cited on page 168.) Bell, E. T., The Development of Mathematics, (McGraw-Hill, New York, 1945), 2nd edition. [Google Books]. (Cited on page 199.) Bergia, S., “Attempts at Unified Field Theories (1919–1955). Alleged Failure and Intrinsic Validation/Refutation Criteria”, in Earman, J., Janssen, M. and Norton, J. D., eds., The Attraction of Gravitation: New Studies in the History of General Relativity, Third International Conference on the History of General Relativity at Johnstown, PA, U.S.A, 27–30 June 1991, Einstein Studies, 5, pp. 274–307, (Birkhäuser, Boston; Basel, 1993). (Cited on pages 10 and 52.) Bergmann, P. G., Introduction to the Theory of Relativity, (Prentice-Hall, Englewood Cliffs, NJ, 1942). [Google Books]. (Cited on pages 30 and 33.) Bergmann, P. G., “Unified Field Theory with Fifteen Field Variables”, Ann. Math. (2), 49, 255–264, (1948). [DOI]. (Cited on pages 31 and 133.) Bergmann, P. G., “50 years of relativity”, Science, 123(3195), 486–494 (1956). [DOI]. (Cited on pages 113 and 195.) Bergmann, P. G., “On Einstein’s λ-Transformations”, Phys. Rev., 103, 780–781, (1956). [DOI]. (Cited on pages 20 and 103.) Bergmann, P. G., “Unitary Field Theories”, in De Sabbata, V. and Schmutzer, E., eds., Unified Field Theories of More Than 4 Dimensions: Including Exact Solutions, Proceedings of the International School of Cosmology and Gravitation held in Erice, Trapani, Sicily, 20 May–1 June 1982, pp. 1–10, (World Scientific, Singapore, 1983). (Cited on page 7.) Bertotti, B., “On the Relation Between Fundamental Tensor and Affinity in Unified Field Theory”, Nuovo Cimento, 11, 358–365, (1954). [DOI]. (Cited on page 17.) Bertotti, B., “The Later Work of E. Schrödinger”, Stud. Hist. Philos. Sci., 16, 83–100, (1985). [DOI]. (Cited on page 10.) Bkouche, R., “Sur la métrique asymétrique”, C. R. Hebd. Seanc. Acad. Sci., 249, 2282–2284, (1959). [ARK]. (Cited on page 13.) Blackett, P. M. S., “The Magnetic Field of Massive Rotating Bodies”, Nature, 159, 658–666, (1947). [DOI], [ADS]. (Cited on pages 51 and 52.) Blagojević, M. and Hehl, F. W., Gauge Theories of Gravitation: A Reader with Commentaries, (Imperial College Press, London, 2013). (Cited on page 9.) Blancheton, É., “Les équations aux variations de la relativité générale”, Publ. Sci. Univ. Alger, Ser. A, 9, 31–117, (1962). Thèse de doctorat, 1961. (Cited on page 172.) Bonnor, W. B., “Static, spherically symmetric solutions in Einstein’s unified field theory”, Proc. R. Soc. London, Ser. A, 209, 353–368, (1951). [DOI]. (Cited on pages 95 and 98.) Bonnor, W. B., “The general static, spherically symmetric solution in Einstein’s unified field theory”, Proc. R. Soc. London, Ser. A, 210, 427–434, (1952). [DOI]. (Cited on pages 95, 98, and 113.) Bonnor, W. B., “Nonsymmetric Unified Field Theories”, Phys. Rev., 92, 1067–1078, (1953). [DOI]. (Cited on pages 92 and 118.) Bonnor, W. B., “The equation of motion in the non-symmetric unified field theory”, Proc. R. Soc. London, Ser. A, 226, 366–377, (1954). [DOI]. (Cited on pages 97, 101, and 150.) Bonnor, W. B., “Les équations du mouvement en théorie unitaire d’Einstein-Schrödinger”, Ann. Inst. Henri Poincare, 15, 133–145, (1957). (Cited on page 118.) Born, M., “Modified Field Equations with a Finite Radius of the Electron”, Nature, 132, 282, (1933). [DOI]. (Cited on page 45.) Born, M., “On the Quantum Theory of the Electromagnetic Field”, Proc. R. Soc. London, Ser. A, 143, 410–437, (1934). [DOI]. (Cited on pages 45 and 192.) Born, M., “Relativity and Quantum Theory”, Nature, 141, 327–328, (1938). [DOI]. (Cited on page 38.) Born, M., “A Suggestion for Unifying Quantum Theory and Relativity”, Proc. R. Soc. London, Ser. A, 165, 291–303, (1938). [DOI]. (Cited on pages 42 and 192.) Born, M., “Reciprocity Theory of Elementary Particles”, Rev. Mod. Phys., 21, 463–473, (1949). [DOI]. (Cited on page 39.) Born, M., “Einstein and Relativity”, Nature, 166, 751, (1950). [DOI]. Book review of The Meaning of Relativity, 4th edition, London: Methuen, 1950. (Cited on page 82.) Born, M. and Infeld, L., “Foundations of the New Field Theory”, Proc. R. Soc. London, Ser. A, 144, 425–451, (1934). [DOI]. (Cited on pages 45, 46, 48, and 101.) Born, M. and Infeld, L., “On the Quantization of the New Field Theory I”, Proc. R. Soc. London, Ser. A, 147, 522–546, (1934). (Cited on page 47.) Born, M. and Infeld, L., “On the Quantization of the New Field Theory II”, Proc. R. Soc. London, Ser. A, 150, 141–166, (1935). [DOI]. (Cited on page 47.) Born, M. and Peng, H. W., “Quantum mechanics of fields. I. Pure fields”, Proc. R. Soc. Edinburgh, 62, 40–57, (1944). (Cited on page 39.) Born, M. and Peng, H. W., “Quantum mechanics of fields. II. Statistics of pure fields”, Proc. R. Soc. Edinburgh, 62, 92–102, (1944). (Cited on page 39.) Born, M. and Peng, H. W., “Quantum mechanics of fields. III. Electromagnetic field and electron field in interaction”, Proc. R. Soc. Edinburgh, 62, 127–137, (1944). (Cited on page 39.) Born, M. and Schrödinger, E., “The absolute Field Constant in the New Field Theory”, Nature, 135, 342, (1935). [DOI]. (Cited on page 50.) Born, M. and Schrödinger, E., “The Uncertainty Principle”, Nature, 135, 261, (1935). (Cited on page 50.) Bose, S., “Solution d’une équation tensorielle invariante dans la théorie du champ unitaire”, Bull. Soc. Math. Fr., 83, 81–88, (1955). Online version (accessed 20 June 2014): http://www.numdam.org/item?id=BSMF_1955__83__81_0. (Cited on page 112.) Bose, S. N., “Les identités de divergence dans la nouvelle théorie unitaire”, C. R. Hebd. Seanc. Acad. Sci., 236, 1333–1335, (1953). [ARK]. (Cited on page 22.) Bose, S. N., “The Affine Connection in Einstein’s New Unitary Field Theory”, Ann. Math. (2), 59, 171–176, (1954). [DOI]. (Cited on pages 90 and 112.) Bouche, L., “Sur une autre forme des équations du champ dans une théorie unitaire du type Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 247, 2302–2304, (1958). [ARK]. (Cited on pages 119 and 124.) Bouche, L., “Les équations approchés du champ dans une théorie unitaire du type Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 249, 1321–1323, (1959). [ARK]. (Cited on page 124.) Bouche, L., “Identités de conservation dans une théorie du type Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 250, 3784–3785, (1960). [ARK]. (Cited on page 124.) Bouche, L., Une généralisation de la théorie du champ unifié relativiste d’Einstein-Schrödinger, Ph.D. thesis, (Faculté des Sciences de Paris, Paris, 1961). (Cited on pages 109, 119, 123, and 124.) Boulier, F. and Neut, S., “Cartan’s Characters and Stairs of Characteristic Sets”, in Boztaş, S. and Shparlinski, I. E., eds., Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proceedings of the 14th International Symposium, AAECC-14, Melbourne, Australia, November 26–30, 2001, Lecture Notes in Computer Science, 2227, pp. 363–372, (Springer, Berlin; New York, 2001). [DOI]. (Cited on page 85.) Brans, C. H., “The roots of scalar-tensor theory: an approximate history”, arXiv, e-print, (2005). [arXiv:gr-qc/0506063]. (Cited on page 137.) Bray, M., Quelques solutions particulières en théorie du champ unifié, Ph.D. thesis, (Faculté des Sciences de Paris, Paris, 1960). (Cited on pages 113 and 124.) Brill, D. R. and Hartle, J. B., “Method of the Self-Consistent Field in General Relativity and its Application to the Gravitational Geon”, Phys. Rev., 135, 271–278, (1964). [DOI]. (Cited on page 193.) Brinis, E., “Qualche illustrazione geometrica dello spazio unitario di Einstein”, Rend. Ist. Lombardo Sci. Lett., Cl. Sci. Mat. Natur., III. Ser., 88, 531–538, (1955). (Cited on page 161.) Brown, H. R., “Book review: ‘The Shaky Game — Einstein, Realism and the Quantum Theory’”, Am. J. Phys., 56(6), 571–573 (1988). (Cited on page 199.) Brown, L. M. and Rechenberg, H., “Quantum field theories, nuclear forces, and the cosmic rays (1934–1938)”, Am. J. Phys., 59, 595–605, (1991). [DOI]. (Cited on page 8.) Buchdahl, H. A., “Variation of Integrals and the Field Equations in the Unitary Field Theory”, Phys. Rev., 104, 1142–1145, (1956). [DOI]. (Cited on page 157.) Buchdahl, H. A., “Gauge-invariant generalization of field theories with asymmetric fundamental tensor”, Quart. J. Math., 8, 89–96, (1957). [DOI]. (Cited on page 157.) Buchdahl, H. A., “Gauge-invariant generalization of field theories with asymmetric fundamental tensor (II)”, Quart. J. Math., 9, 257–264, (1958). [DOI]. (Cited on page 157.) Buchner, K., “On Treder’s Interpretation of Einstein’s Unified Field Theory”, Prog. Theor. Phys., 48(4), 1421–1422 (1972). (Cited on page 102.) Busemann, H., “The Geometry of Finsler Space”, Bull. Am. Math. Soc., 56, 5–16, (1950). [DOI]. (Cited on page 175.) Callaway, J., “The equations of motion in Einstein’s new unified field theory”, Phys. Rev., 92, 1567–1570, (1953). [DOI]. (Cited on pages 91, 117, and 123.) Callaway, J., “Mach’s principle and unified field theory”, Phys. Rev., 96, 778–780, (1954). [DOI]. (Cited on pages 92 and 192.) Cap, F., “Über allgemeine Relativitätstheorie und einheitliche Feldtheorie”, Acta Phys. Austriaca, 6, 135–156, (1952). (Cited on page 10.) Capella, A., “Sur la quantification du champ unitaire en théorie de Jordan-Thiry à l’approximation linéaire”, C. R. Hebd. Seanc. Acad. Sci., 250, 2140–2142, (1960). [ARK]. (Cited on page 171.) Capella, A., “Théorie minkowskienne de la gravitation”, C. R. Hebd. Seanc. Acad. Sci., 258, 87–89, (1964). [ARK]. (Cited on page 167.) Cartan, É., Les Espaces de Finsler, Actualités Scientifiques et Industrielles, 79, (Hermann, Paris, 1934). (Cited on page 175.) Cattaneo-Gasparini, I., “Sulle geodetiche di una Vn relative a una connessione affine”, Rend. Lincei, 22, 146–154, (1957). (Cited on page 161.) Chamseddine, A. H. and Mukhanov, V., “Massive Hermitian Gravity”, J. High Energy Phys., 2012(08), 036 (2012). [DOI], [arXiv:1205.5828]. (Cited on page 64.) Chau, N. P., “Le problème de mouvement en théorie du champ unifié asymétrique”, C. R. Hebd. Seanc. Acad. Sci., 252, 4123–4125, (1961). [ARK]. (Cited on pages 117, 118, and 124.) Choquet-Bruhat, Y., “Theoremes d’existence en mécanique des fluides relativistes”, Bull. Soc. Math. France, 6, 155–175, (1958). (Cited on page 128.) Clauser, E., “Una particolare soluzione delle equazione einsteiniane della relatività unitaria”, Rend. Lincei, 15(3–4), 171–177 (1953). (Cited on page 100.) Clauser, E., “Sui fronti d’onda nella teoria unitaria Einsteiniana”, Rend. Ist. Lombardo Sci. Lett., Cl. Sci. Mat. Natur., III. Ser., 87, 473–492, (1954). (Cited on page 128.) Clauser, E., “Movimento di particelle nel campo unitario einsteiniano”, Rend. Lincei, Ser. VIII, 21, 408–416, (1956). (Cited on pages 115, 116, 117, 118, and 163.) Clauser, E., “Legge di moto nell’ultima teoria unitaria einsteiniana”, Nuovo Cimento, 7, 764–788, (1958). [DOI]. (Cited on pages 117 and 163.) Clauser, E., “Condizioni di integrabilià e moto di particelle nell’ultima teoria unitaria einsteiniana”, Rend. Lincei, 26, 498–505, (1959). (Cited on pages 117 and 164.) Corson, E. M., Introduction to Tensors, Spinors, and Relativistic Wave-Equations, (Blackie & Son, London and Glasgow, 1953). (Cited on page 42.) Cossu, A., “Alcune osservazioni sul confronto tra connessioni affini e metriche riemanniane”, Rend. Lincei, 14, 29–35, (1953). (Cited on page 161.) Cossu, A., “Alcune osservazioni sulle connessioni tensoriali”, Rend. Mat. Appl. (5), 13, 373–390, (1955). (Cited on page 161.) Costa de Beauregard, O., “Sur la dynamique des milieux doués d’une densité de moment cinétique propre”, C. R. Hebd. Seanc. Acad. Sci., 214, 904–906, (1942). [ARK]. (Cited on page 154.) Costa de Beauregard, O., “L’hypothèse de l’effet gravitationnel de spin”, Cah. Phys., 12(99), 407–415 (1958). (Cited on page 156.) Costa de Beauregard, O., “Métrique asymétrique et représentation des changements d’axes locaux. Application á la théorie de l’effet gravitationnel de spin”, C. R. Hebd. Seanc. Acad. Sci., 250, 984–986, (1960). [ARK]. (Cited on page 155.) Costa de Beauregard, O., “L’effet gravitationnel de spin sur la particule de spin zéro”, C. R. Hebd. Seanc. Acad. Sci., 253, 1761–1763, (1961). [ARK]. (Cited on page 156.) Costa de Beauregard, O., “Sur le terme en 55 de la théorie unitaire pentadimensionnelle”, C. R. Hebd. Seanc. Acad. Sci., 255, 3383–3385, (1962). [ARK]. (Cited on page 172.) Costabel, P., “Marie-Antoinette Tonnelat (1912–1880)”, Rev. Hist. Sci., 36(3–4), 329–331 (1983). (Cited on pages 104 and 181.) Crumeyrolle, A., Sur quelques interprétations physiques et théoriques des équations du champ unitaire d’Einstein-Schrödinger, Ph.D. thesis, (University of Paris, Paris, 1961). (Cited on pages 101 and 131.) Crumeyrolle, A., “Sur quelques interprétations physiques et théoriques des équations du champ unitaire d’Einstein-Schrödinger”, Riv. Mat. Univ. Parma (2), 3(2), 331–391 (1962). (Cited on pages 132 and 189.) Crumeyrolle, A., “Sur des variétés différentielles dont les coordonnées appartiennent à une extension quadratique du corps des réels et application à la théorie unitaire d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 256, 2121–2123, (1963). [ARK]. (Cited on page 141.) Crumeyrolle, A., “Sur quelques interprétations physiques et théoriques des équations du champ unitaire d’Einstein-Schrödinger. II”, Riv. Mat. Univ. Parma (2), 5, 85–132, (1964). (Cited on pages 132 and 141.) Crumeyrolle, A., “Variétés différentiables à coordonnées hypercomplexes. Applications à une géométrisation et à une généralisation de la théorie d’Einstein-Schrödinger”, Ann. Fac. Sci. Toulouse (4), 26, 105–137, (1964). Online version (accessed 20 June 2014): http://www.numdam.org/item?id=AFST_1962_4_26__105_0. (Cited on pages 132 and 141.) Crumeyrolle, A., “Variétés hypercomplexes et théorie unitaire d’Einstein”, in Atti del Settimo Congresso dell’Unione Matematica Italiana, Proceedings of the congress held in Genova, 30 September–5 October 1963, pp. 383–384, (Edizioni Cremonese, Roma, 1965). (Cited on page 141.) Damour, T., “A new and consistent method for classical renormalization”, Nuovo Cimento B, 26, 157–164, (1975). [DOI], [ADS]. (Cited on page 180.) Damour, T., “On some links between mathematical physics and physics in the context of general relativity”, in Flato, M., Kerner, R. and Lichnerowicz, A., eds., Physics on Manifolds, Proceedings of the International Colloquium in honour of Yvonne Choquet-Bruhat, Paris, June 3–5, 1992, Mathematical Physics Studies, 15, pp. 59–65, (Kluwer, Dordrecht; Boston, 1994). (Cited on page 64.) Damour, T., Deser, S. and McCarthy, J., “Theoretical problems in nonsymmetric gravitational theory”, Phys. Rev. D, 45, R3289–R3291 (1992). [DOI], [ADS]. (Cited on page 64.) Damour, T., Deser, S. and McCarthy, J., “Nonsymmetric gravity theories: Inconsistencies and a cure”, Phys. Rev. D, 47, 1541–1556, (1993). [DOI]. (Cited on pages 64 and 85.) Damour, T. and Esposito-Farèse, G., “Tensor-multi-scalar theories of gravitation”, Class. Quantum Grav., 9, 2093–2176, (1992). [DOI]. (Cited on page 31.) Damour, T., Gibbons, G. W. and Gundlach, C., “Dark matter, time-varying G, and a dilaton field”, Phys. Rev. Lett., 64, 123–126, (1990). [DOI], [ADS]. (Cited on page 31.) Damour, T. and Nordtvedt, K., “General relativity as a cosmological attractor of tensor-scalar theories”, Phys. Rev. Lett., 70, 2217–2219, (1993). [DOI]. (Cited on page 31.) Dăngvu, H., “Étude des équations du champ de Jordan-Thiry en repère naturel adapté”, C. R. Hebd. Seanc. Acad. Sci., 260, 4307–4310, (1965). [ARK]. (Cited on page 136.) Daăngvu, H., “Contribution à une formulation Minkowskienne de la gravitation Einsteinienne par une méthode du type Rosen”, Cah. Phys., 21(198), 53–99 (1967). (Cited on page 169.) Dăngvu, H., “Nonstatic Solutions with Spherical Symmetry for Jordan-Thiry field equations”, C. R. Acad. Sci. Ser. A, 267, 61–64, (1968). (Cited on page 137.) Darrigol, O., “La genèse du concept de champ quantique”, Ann. Phys. (Paris), 9, 433–501, (1984). (Cited on page 7.) Dautcourt, G., “Sur la solution de l’équation d’Einstein \({g_{\underset + \mu \underset - \nu; \rho}} = 0\)”, C. R. Hebd. Seanc. Acad. Sci., 249, 2159–2161, (1959). [ARK]. (Cited on page 113.) de Broglie, L., “Sur la nature du photon”, C. R. Hebd. Seanc. Acad. Sci., 198, 135–138, (1934). [ARK]. (Cited on page 8.) de Broglie, L., “La théorie du photon et la mécanique ondulatoire relativiste des systemès”, C. R. Hebd. Seanc. Acad. Sci., 203, 473–477, (1936). [ARK]. (Cited on page 8.) de Broglie, L., “A general survey of the scientific work of Albert Einstein”, in Schilpp, P., ed., Albert Einstein: Philosopher-Scientist, pp. 109–127, (Tudor, New York, 1951). (Cited on page 105.) De Simoni, F., “Le soluzioni generali della statica a simmetria sferica nell’ultima teoria unitaria di Einstein”, Rend. Lincei, Ser. VIII, 16, 348–355, (1954). (Cited on page 98.) De Simoni, F., “Sulle equazioni di campo della teoria relativistica unitaria”, Rend. Lincei, Ser. VIII, 18, 297–304, (1955). (Cited on page 161.) Debever, R., ed., Elie Cartan-Albert Einstein. Lettres sur le parallélisme absolu 1929–1932, (Académie Royale de Belgique and Princeton University Press, Bruxelles, 1979). (Cited on pages 59, 73, and 84.) Deser, S., “Self-interaction and gauge invariance”, Gen. Relativ. Gravit., 1, 9–18, (1970). [DOI], [ADS], [arXiv:gr-qc/0411023]. (Cited on page 168.) Deser, S. and Laurent, B. E., “Gravitation without self-interaction”, Ann. Phys. (N.Y.), 50, 76–101, (1968). [DOI]. (Cited on page 168.) DeWitt, B. S., ed., Papers from the Conference on the Role of Gravitation in Physics Held at the University of North Carolina, Chapel Hill, North Carolina, January 18–23, 1957, Proceedings from the Conference held at the University of North Carolina, Chapel Hill, North Carolina, January 18–23, 1957, Rev. Mod. Phys., 29, (APS, College Park, MD, 1957). (Cited on page 10.) DeWitt, C. M. and Rickles, D., eds., The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference, WADC Technical Report 57-216 from the Conference at Chapel Hill, North Carolina, January 18–23, 1957, Edition Open Accesss: Sources, 5, (Max Planck Research Library for the History and Development of Knowledge, Berlin, 2011). URL (accessed 11 February 2014): http://edition-open-access.de/sources/5/. (Cited on pages 125, 193, and 194.) Dirac, P. A. M., “Quantized singularities in the electromagnetic field”, Proc. R. Soc. London, Ser. A, 133, 60–73, (1931). [DOI]. (Cited on page 138.) Dirac, P. A. M., “The Cosmological Constants”, Nature, 139, 323, (1937). [DOI], [ADS]. (Cited on page 30.) Dirac, P. A. M., “A new basis for cosmology”, Proc. R. Soc. London, Ser. A, 165, 199–208, (1938). [DOI], [ADS]. (Cited on page 30.) Dirac, P. A. M., “The Evolution of the Physicist’s Picture of Nature”, Sci. Am., 208(5), 45–53 (1963). [DOI]. (Cited on page 190.) Dirac, P. A. M., “Methods in Theoretical Physics”, in Salam, A., ed., From a Life of Physics: Special Supplement of the IAEA Bulletin 1969, International Symposium on Contemporary Physics, Trieste, Italy, 1968, IAEA Bulletin, pp. 21–28, (International Atomic Energy Agency, Wien, 1969). also published in: From a Life of Physics, World Scientific, 1989, pp.19–30, ed. Salam, A. (Cited on page 189.) Dirac, P. A. M., Directions in Physics, (Wiley, New York, 1978). (Cited on page 194.) Droz-Vincent, P., “Généralisation des équations d’Einstein correspondant à l’hypothèse d’une masse non nulle pour le graviton”, C. R. Hebd. Seanc. Acad. Sci., 249, 2290–2292, (1959). [ARK]. (Cited on page 166.) Droz-Vincent, P., Quantification du champ à l’approximation linéaire en théorie de Jordan-Thiry, Ph.D. thesis, (Université de Paris. Faculté des sciences, Paris, 1959). (Cited on page 171.) Droz-Vincent, P., “Une méthode de quantification en théorie unitaire pentadimensionnelle”, C. R. Hebd. Seanc. Acad. Sci., 248, 1790–1792, (1959). [ARK]. (Cited on pages 170 and 171.) Droz-Vincent, P., “Crochets de Poisson dans le cas d’un champ au lagrangien linéaire”, C. R. Hebd. Seanc. Acad. Sci., 253, 2862–2864, (1961). [ARK]. (Cited on page 173.) Droz-Vincent, P., “Sur les équations du champ unitaire varié”, C. R. Hebd. Seanc. Acad. Sci., 252, 3405–3407, (1961). [ARK]. (Cited on page 173.) Droz-Vincent, P., “Quantification de la théorie de Jordan-Thiry”, in Lichnerowicz, A. and Tonnelat, M. A., eds., Les Théories Relativistes de la Gravitation, Actes du colloque tenu à Royaumont, les 21–27 Juin 1959, Colloques Internationaux du CNRS, 91, pp. 359–372, (Editions du CNRS, Paris, 1962). (Cited on page 193.) Droz-Vincent, P., “Contribution à la quantification des théories relativistes de électromagnétisme et de la gravitation”, Cah. Phys., 18(170), 369–405 (1964). (Cited on pages 170, 171, and 173.) Droz-Vincent, P., “Quantification du champ pentadimensionnel linéarisé”, Cah. Phys., 18(161), 25–37 (1964). (Cited on page 171.) Droz-Vincent, P., “Suppression des contraintes du champ de gravitation par l’introduction d’une source vectorielle”, C. R. Hebd. Seanc. Acad. Sci., 259, 515–518, (1964). [ARK]. (Cited on page 173.) Droz-Vincent, P., “Poisson brackets of the constraints in unified field theory”, Ann. Inst. Henri Poincare, 7(4), 319–331 (1967). (Cited on page 173.) Dyson, F. J., “Field Theory”, Sci. Am., 188(4), 57–64 (1953). [DOI]. (Cited on pages 40 and 88.) Eddington, A. S., “A generalisation of Weyl’s theory of the electromagnetic and gravitational fields”, Proc. R. Soc. London, Ser. A, 99, 104–122, (1921). [DOI]. (Cited on pages 101 and 178.) Eddington, A. S., The Mathematical Theory of Relativity, (Cambridge University Press, Cambridge, 1923). (Cited on page 175.) Eddington, A. S., The mathematical theory of relativity, (Cambridge University Press, Cambridge, 1930), 2nd edition. (Cited on page 53.) Einstein, A., “Zur allgemeinen Relativitätstheorie”, Sitzungsber. Preuss. Akad. Wiss., 1923(V), 32–38 (1923). (Cited on pages 49, 68, and 101.) Einstein, A., “Einheitliche Feldtheorie von Gravitation und Elektrizität”, Sitzungsber. Preuss. Akad. Wiss., 1925(XXII), 414–419 (1925). (Cited on pages 55, 57, and 58.) Einstein, A., “Physik und Realität”, J. Franklin Inst., 221(3), 313–337 (1936). [DOI]. (Cited on pages 33 and 191.) Einstein, A., “Demonstración de la no existencia de campos gravitacionales sin singularidades de masa total no nula”, Rev. Univ. Nac. Tucuman, Ser. A, 2, 5–10, (1941). (Cited on page 125.) Einstein, A., “Demonstration of the non-existence of gravitational fields with a non-vanishing total mass free of singularities”, Rev. Univ. Nac. Tucuman, Ser. A, 2, 11–15, (1941). (Cited on pages 74 and 125.) Einstein, A., “Bivector Fields II”, Ann. Math. (2), 45, 15–23, (1944). [DOI]. (Cited on page 37.) Einstein, A., “A Generalization of the Relativistic Theory of Gravitation”, Ann. Math. (2), 46, 578–584, (1945). [DOI]. (Cited on pages 18, 23, 57, 58, 59, 60, 61, 62, 65, 68, 69, 79, 81, 100, and 151.) Einstein, A., “A generalized theory of gravitation”, Rev. Mod. Phys., 20, 35–39, (1948). [DOI]. (Cited on pages 75, 76, 80, 95, and 151.) Einstein, A., “The Bianchi identities in the generalized theory of gravitation”, Can. J. Math., 2, 120–128, (1950). [DOI]. (Cited on pages 19, 76, 79, 80, and 152.) Einstein, A., The Meaning of Relativity, (Princeton University Press, Princeton, 1950), 3rd rev. edition. including ‘The Generalized Theory of Gravitation’. (Cited on pages 10, 22, 23, 77, 81, 82, 83, 84, 88, 95, and 142.) Einstein, A., The Meaning of Relativity, (Methuen, London, 1950), 4th edition. with further appendix. (Cited on pages 23, 80, and 82.) Einstein, A., “On the Generalized Theory of Gravitation”, Sci. Am., 182 (April), 13–17 (1950). [DOI]. (Cited on pages 85 and 86.) Einstein, A., “Autobiographical Notes”, in Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers, VII, pp. 1–95, (Tudor Publishing, New York, 1951), 2nd rev. edition. ed. Schilpp, P. A. (Cited on page 78.) Einstein, A., The Meaning of Relativity, (Methuen, London, 1951), 5th rev. edition. including “The Generalized Theory of Gravitation”. (Cited on page 82.) Einstein, A., “Einleitende Bemerkungen über Grundbegriffe”, in Louis de Broglie: physicien et penseur, pp. 4–15, (Éditions Albin Michel, Paris, 1953). (Cited on page 89.) Einstein, A., The Meaning of Relativity, (Princeton University Press, Princeton, 1953), 4th rev. edition. including ‘The Generalized Theory of Gravitation’. (Cited on pages 10, 20, 23, 81, 84, 87, 88, 89, 95, 161, and 199.) Einstein, A., Ideas and Opinions, (Crown Publishers, New York, 1954). (Cited on page 189.) Einstein, A., The Meaning of Relativity, (Princeton University Press, Princeton, 1955), 5th rev. edition. including ‘The Generalized Theory of Gravitation’. (Cited on pages 84, 85, 93, 94, 101, and 194.) Einstein, A., “Prefazione di Albert Einstein”, in Pantaleo, M., ed., Cinquant’anni di relatività 1951–1955, pp. XV–XVII, (Editrice Universitaria, Firenze, 1955). (Cited on page 194.) Einstein, A., Albert Einstein. Briefe an Maurice Solovine, (Gauthier-Villars, Paris, 1956). ed. Solovine, M. (Cited on pages 63, 75, 80, 88, 94, and 188.) Einstein, A., “A Comment on a Criticism of Unified Field Theory”, Phys. Rev., 89, 321, (1956). (Cited on page 86.) Einstein, A., The Meaning of Relativity, (Methuen, London, 1956), 6th edition. Appendix II. (Cited on page 93.) Einstein, A., Correspondance avec Michele Besso 1903–1955, (Hermann, Paris, 1972). (Cited on pages 35, 59, 60, 77, 191, 199, and 200.) Einstein, A., Albert Einstein: Mein Weltbild, Ullstein Materialien, (Ullstein, Frankfurt, 1984). (Cited on page 198.) Einstein, A. and Bargmann, V., “Bivector Fields”, Ann. Math. (2), 45, 1–14, (1944). [DOI]. (Cited on pages 35 and 36.) Einstein, A., Bargmann, V. and Bergmann, P. G., “On the Five-Dimensional Representation of Gravitation and Electricity”, in Theodore von Kármán Anniversary Volume: Contributions to Applied Mechanics and Related Subjects by the Friends of Theodore Von Kármán on His Sixtieth Birthday, pp. 212–225, (Caltech, Pasadena, 1941). (Cited on page 33.) Einstein, A. and Bergmann, P., “On a Generalization of Kaluza’s Theory of Electricity”, Ann. Math. (2), 39, 683–701, (1938). [DOI]. (Cited on page 33.) Einstein, A., Born, H. and Born, M., Briefwechsel: 1916–1955 kommentiert von Max Born; Geleitwort von Bertrand Russell; Vorwort von Werner Heisenberg, (Edition Erbrich, Frankfurt am Main, 1982). (Cited on pages 38, 39, 46, 48, 56, 75, 83, and 86.) Einstein, A. and Fokker, A. D., “Nordströmsche Gravitationstheorie vom Standpunkt des absoluten Differentialkalküls”, Ann. Phys. (Leipzig), 44, 321–328, (1914). [DOI]. (Cited on page 166.) Einstein, A. and Infeld, L., “On motion of particles in general relativity”, Can. J. Math., 1, 209–241, (1949). [DOI]. (Cited on page 117.) Einstein, A., Infeld, L. and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math. (2), 39, 65–100, (1938). [DOI]. (Cited on page 117.) Einstein, A. and Kaufman, B., “Sur l’état actuel de la théorie générale de la gravitation”, in Louis de Broglie: physicien et penseur, pp. 321–342, (Éditions Albin Michel, Paris, 1953). (Cited on pages 89, 90, and 96.) Einstein, A. and Kaufman, B., “Algebraic Properties of the Field in the Relativistic Theory of the Asymmetric Field”, Ann. Math., 59, 230–244, (1954). [DOI]. (Cited on page 90.) Einstein, A. and Kaufman, B., “A New Form of the General Relativistic Field Equations”, Ann. Math. (2), 62, 128–138, (1955). [DOI]. (Cited on pages 92, 93, 94, and 96.) Einstein, A. and Mayer, W., “Einheitliche Theorie von Gravitation und Elektrizität”, Sitzungsber. Preuss. Akad. Wiss., 1931(XXV), 541–557 (1931). (Cited on page 138.) Einstein, A. and Mayer, W., “Systematische Untersuchung über kompatible Feldgleichungen, welche in einem Riemannschen Raume mit Fernparallelismus gesetzt werden können”, Sitzungsber. Preuss. Akad. Wiss., 1931(XIII), 257–265 (1931). (Cited on page 23.) Einstein, A. and Pauli, W., “On the Non-Existence of Regular Stationary Solutions of Relativistic Field Equations”, Ann. Math. (2), 44, 131–137, (1943). [DOI]. (Cited on pages 74, 125, and 134.) Einstein, A. and Rosen, N., “The particle problem in the general theory of relativity”, Phys. Rev., 48, 73–77, (1935). [DOI]. (Cited on page 59.) Einstein, A. and Straus, E. G., “A Generalization of the Relativistic Theory of Gravitation, II”, Ann. Math. (2), 47, 731–741, (1946). [DOI]. (Cited on pages 57, 58, 62, 65, 67, 68, 69, 76, 78, 79, and 81.) Einstein, H. A. and El-Samni, E.-S. A., “Hydrodynamic Forces on a Rough Wall”, Rev. Mod. Phys., 21, 520–524, (1949). [DOI]. (Cited on page 78.) Eisenhart, L. P., “Einstein’s recent theory of gravitation and electricity”, Proc. Natl. Acad. Sci. USA, 12, 125–129, (1926). [DOI]. (Cited on page 142.) Eisenhart, L. P., Non-Riemannian Geometry, AMS Colloquium Publications, 8, (American Mathematical Society, Providence, RI, 1927). (Cited on pages 14 and 142.) Eisenhart, L. P., ed., The Theory of Relativity in Contemporary Science, Papers read at the Celebration of the Seventieth Birthday of Professor Albert Einstein in Princeton, March 19, 1949, Proc. Amer. Phil. Soc., 93, (American Philosophical Society, Philadelphia, 1949). [Google Books]. (Cited on page 78.) Eisenhart, L. P., “Generalized Riemann Spaces”, Proc. Natl. Acad. Sci. USA, 37, 311–315, (1951). [DOI]. (Cited on page 142.) Eisenhart, L. P., “Generalized Riemann Spaces. II.”, Proc. Natl. Acad. Sci. USA, 38, 505–508, (1952). [DOI]. (Cited on page 142.) Eisenhart, L. P., “A Unified Theory of General Relativity and Electromagnetism”, Proc. Natl. Acad. Sci. USA, 42, 249–251, (1956). (Cited on page 142.) Eisenhart, L. P., “A Unified Theory of General Relativity and Electromagnetism. II”, Proc. Natl. Acad. Sci. USA, 42, 646–650, (1956). (Cited on pages 142 and 143.) Eisenhart, L. P., “A Unified Theory of General Relativity and Electromagnetism. III”, Proc. Natl. Acad. Sci. USA, 42, 878–881, (1956). (Cited on pages 142 and 143.) Eisenhart, L. P., “A Unified Theory of General Relativity and Electromagnetism. IV”, Proc. Natl. Acad. Sci. USA, 43, 333–336, (1957). [DOI]. (Cited on pages 142 and 143.) Eisenhart, L. P., “Generalized Spaces of General Relativity”, Proc. Natl. Acad. Sci. USA, 45, 1759–1762, (1959). [DOI]. (Cited on page 143.) Eisenhart, L. P., Riemannian Geometry, (Princeton University Press, Princeton, NJ, 1964). 5th printing (1st printing 1926). (Cited on page 26.) Eisenstaedt, J., “The low water mark of general relativity, 1925–1955”, in Howard, D. and Stachel, J., eds., Einstein and the History of General Relativity, Based on the proceedings of the 1986 Osgood Hill Conference, North Andover, Massachusetts, 8–11 May, Einstein Studies, 1, pp. 277–292, (Birkhäuser, Boston; Basel, 1989). (Cited on page 7.) Emparan, R., Harmark, T., Niarchos, V. and Obers, N. A., “Essentials of Blackfold Dynamics”, J. High Energy Phys., 2010(03), 063 (2010). [DOI], [arXiv:0910.1601]. (Cited on page 196.) Enz, C. P., No Time to be Brief: A Scientific Biography of Wolfgang Pauli, (Oxford University Press, Oxford, 2002). [DOI]. (Cited on pages 10, 126, and 139.) Fierz, M., “On the physical interpretation of P. Jordan’s extended theory of gravitation”, Helv. Phys. Acta, 29, 128–134, (1956). (Cited on pages 31 and 32.) Fierz, M. and Pauli, W., “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”, Proc. R. Soc. London, Ser. A, 173, 211–232 (1939). [DOI], [ADS]. (Cited on page 167.) Fine, A., The Shaky Game: Einstein, Realism and the Quantum Theory, (The University of Chicago Press, Chicago; London, 1986). (Cited on page 199.) Fink, K., “Metrisches Feld und skalares Materiefeld”, Comment. Math. Helv., 25, 26–42, (1951). [DOI]. (Cited on page 32.) Finsler, P., Über Kurven und Flächen in allgemeinen Räumen, Lehrböcher und Monographien aus dem Gebiete der exakten Wissenschaften: Mathematische Reihe, 11, (Birkhäuser, Basel, 1951). Unveränderter Nachdruck der Dissertation von 1918. (Cited on page 12.) Finzi, B., “La récente théorie relativiste unitaire d’Einstein”, Rend. Mat. Appl. (5), 11(1), 75–87 (1952). (Cited on page 86.) Finzi, B., “Su le equazioni di campo della teoria relativistica unitaria di Einstein”, Rend. Lincei, 14, 581–588, (1953). (Cited on page 161.) Finzi, B., “Calcolo tensoriale: teorie relativistiche e teorie unitarie (Cinquantenario della relatività di Einstein 1905–1955)”, Conf. Semin. Mat. Univ. Bari, 15, 42–51, (1955). (Cited on page 161.) Finzi, B., “Teorie relativistiche unitarie”, in Atti del Quinto Congresso dell’Unione Matematica Italiana, Proceedings of the congress held in Pavia and Torino, 6–9 October 1955, pp. 35–56, (Edizioni Cremonese, Roma, 1956). (Cited on pages 10, 101, 161, and 190.) Flint, H. T., “A Relativistic Basis of Quantum Theory”, Proc. R. Soc. London, Ser. A, 144, 413–424, (1934). (Cited on pages 40 and 41.) Flint, H. T., “A Relativistic Basis of Quantum Theory II”, Proc. R. Soc. London, Ser. A, 145, 645–656, (1934). (Cited on page 41.) Flint, H. T., “A Relativistic Basis of the Quantum Theory. III”, Proc. R. Soc. London, Ser. A, 150, 421–441, (1935). [DOI]. (Cited on pages 41 and 44.) Flint, H. T., “The Analogy between the Photon and the Electron and the Derivation of the Quantum Equation”, Proc. Phys. Soc., 50, 899–909, (1938). [DOI]. (Cited on page 41.) Flint, H. T., “The Theory of the Electric Charge and the Quantum Theory. — Part I”, Philos. Mag. (7), 29, 330–343, (1940). [DOI]. (Cited on page 41.) Flint, H. T., “The Theory of the Electric Charge and the Quantum Theory. — Part II”, Philos. Mag. (7), 29, 417–433, (1940). [DOI]. (Cited on page 41.) Flint, H. T., “The Theory of the Electric Charge and the Quantum Theory. — Part III”, Philos. Mag. (7), 33, 369–383, (1942). [DOI]. (Cited on page 41.) Flint, H. T., “A Study of the Nature of the Field Theories of the Electron and Positron and of the Meson”, Proc. R. Soc. London, Ser. A, 185, 14–34, (1944). (Cited on page 41.) Flint, H. T., “Quantum Equations and Nuclear Field Theories”, Philos. Mag. (7), 36, 635–643, (1945). [DOI]. (Cited on page 41.) Flint, H. T., “Grundlagen zu einer linearen Feldtheorie”, Z. Phys., 142, 401–405, (1955). [DOI]. (Cited on page 33.) Flint, H. T. and Williamson, E. M., “Die Beziehung der Quantentheorie zu den Theorien der Gravitation und des Elektromagnetismus und eine Anwendung auf die Theorie des Elektrons”, Z. Phys., 135(3), 260–269 (1953). [DOI]. (Cited on page 42.) Fock, V. A. and Ivanenko, D. D., “Über eine mögliche geometrische Deutung der relativistischen Quantentheorie”, Z. Phys., 54, 798–802, (1929). [DOI]. (Cited on pages 41 and 43.) Fourès-Bruhat, Y., “Théorèmes d’existence et d’unicité pour les équations de la théorie unitaire de Jordan-Thiry”, C. R. Hebd. Seanc. Acad. Sci., 232, 1800–1802, (1951). [ARK]. (Cited on page 135.) Fourès-Bruhat, Y., “Théorèmes d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires”, Acta Math., 88, 141–225, (1952). [DOI]. (Cited on page 127.) Fourès-Bruhat, Y., “Le problème de Cauchy dans la théorie relativiste de l’électromagnetisme et dans la théorie unitaire de Jordan-Thiry”, in Mercier, A. and Kervaire, M., eds., Fünfzig Jahre Relativitätstheorie — Cinquantenaire de la Théorie de la Relativité — Jubilee of Relativity Theory, Proceedings of the conference held in Bern, Switzerland, 11–16 July 1955, Helv. Phys. Acta Suppl., 29, pp. 76–78, (Birkhäuser, Basel, 1956). [DOI]. (Cited on page 135.) Fujii, Y. and Maeda, K.-I., The Scalar-Tensor Theory of Gravitation, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2003). [Google Books]. (Cited on page 137.) Galvagno, M. and Giribet, G., “The particle problem in classical gravity: a historical note on 1941”, Eur. J. Phys., 26, S97–S110 (2005). [DOI]. (Cited on page 125.) Geiger, G., “Intertheory relations from unified field theories”, J. Gen. Philos. Sci., 22(2), 263–282 (1991). [DOI]. (Cited on page 187.) Ghosh, N. N., “On the solution of Γ’s for a type of Non-Symmetric Tensor Field gμν”, Prog. Theor. Phys., 13(6), 587–593 (1955). [DOI]. (Cited on pages 112 and 159.) Ghosh, N. N., “On a solution of Field Equations in Einstein’s Unified Field Theory. I”, Prog. Theor. Phys., 16, 421–428, (1956). [DOI]. (Cited on page 159.) Ghosh, N. N., “On a solution of Field Equations in Einstein’s Unified Field Theory. II”, Prog. Theor. Phys., 17(2), 131–138 (1957). [DOI]. (Cited on page 159.) Giao, A., “Sur le magnétisme des masses en rotation”, C. R. Hebd. Seanc. Acad. Sci., 224, 1813–1815, (1947). [ARK]. (Cited on page 51.) Gião, A., “Sur l’effet mécano-magnétique à l’intérieur des masses sphériques en rotation. Application au champ magnétique terrestre”, C. R. Hebd. Seanc. Acad. Sci., 226, 645–647, (1948). [ARK]. (Cited on page 51.) Gödel, Kurt, “An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation”, Rev. Mod. Phys., 21, 447–450, (1949). [DOI]. (Cited on page 78.) Goenner, H., “Unified Field Theories: From Eddington and Einstein Up To Now”, in De Sabbata, V. and Karade, T. M., eds., Relativistic Astrophysics and Cosmology, Vol. 1, Proceedings of the Sir Arthur Eddington Centenary Symposium, Nagpur, India 1984, pp. 176–196, (World Scientific, Singapore, 1984). (Cited on page 10.) Goenner, H., “On the History of Unified Field Theories”, Living Rev. Relativity, 7, lrr-2004-2 (2004). [DOI], [ADS]. URL (accessed 20 May 2014): http://www.livingreviews.org/lrr-2004-2. (Cited on page 11.) Goenner, H., “Some remarks on the genesis of scalar-tensor theories”, Gen. Relativ. Gravit., 44, 2077–2097, (2012). [DOI], [arXiv:1204.3455 [gr-qc]]. (Cited on pages 30 and 137.) Gotusso, L., “Contributi alla teoria relativistica de Horváth”, Rend. Ist. Lombardo Accad. Sci. Lett., Sci. Mat. Fis. Chim. Geol., Ser. A, 93, 64–72, (1959). (Cited on page 162.) Graiff, F., “Formule di commutazione e trasporto ciclico nei recenti spazi di Einstein”, Rend. Ist. Lombardo Sci. Lett., Cl. Sci. Mat. Natur., III. Ser., 87, 105–110, (1954). (Cited on page 161.) Graiff, F., “Sul tensore elletromagnetico in una recente teoria unitaria”, Rend. Ist. Lombardo Sci. Lett., Cl. Sci. Mat. Natur., III. Ser., 88, 833–840, (1955). (Cited on page 161.) Graves, J. C., The Conceptual Foundation of Contemporary Relativity Theory, (MIT Press, Cambridge, MA; London, 1971). (Cited on page 187.) Grosjean, P.-V., “La géométrie ‘semi-métrique’ et la théorie unitaire d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 247, 1562–1565, (1958). [ARK]. (Cited on page 141.) Gross, D., “Einstein and the Quest for a Unified Theory”, in Galison, P. L., Holton, G. and Schweber, S. S., eds., Einstein for the 21st Century: His Legacy in Science, Art, and Modern Culture, pp. 287–297, (Princeton University Press, Princeton, NJ, 2008). (Cited on page 196.) Gross, D. J., “Oscar Klein and gauge theory”, in Lindström, U., ed., The Oskar Klein Centenary, Proceedings of the Symposium, held 19–21 September 1994 in Stockholm, Sweden, p. 94, (World Scientific, Singapore; River Edge, NJ, 1995). [arXiv:hep-th/9411233]. (Cited on page 34.) Gupta, S. N., “Einstein’s and Other Theories of Gravitation”, Rev. Mod. Phys., 29, 334–336, (1957). [DOI]. (Cited on page 168.) Haimovici, M., “Sur les espaces d’Einstein à connexion affine”, C. R. Hebd. Seanc. Acad. Sci., 224, 94–96, (1947). [ARK]. (Cited on page 38.) Hattori, K., “Über eine formale Erweiterung der Relativitätstheorie und ihren Zusammenhang mit der Theorie der Elektrizität”, Phys. Z., 29, 538–549, (1928). (Cited on pages 25 and 142.) Havas, P. and Goldberg, J. N., “Lorentz-invariant equations of motion of point masses in the general theory of relativity”, Phys. Rev., 128, 398–414, (1962). [DOI]. (Cited on page 169.) Hawking, S. W. and Ellis, G. F. R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [Google Books]. (Cited on page 137.) Heckmann, O., Jordan, P. and Fricke, W., “Zur erweiterten Gravitationstheorie. I”, Z. Astrophys., 28, 113–149, (1951). (Cited on page 32.) Hehl, F. and Obukhov, Y. N., “Élie Cartan’s torsion in geometry and in field theory, an essay”, Ann. Fond. Louis de Broglie, 32(2–3), 157–194 (2007). Online version (accessed 20 June 2014): http://aflb.ensmp.fr/AFLB-322/aflb322m595.htm. (Cited on page 9.) Hehl, F. W. and Kröner, E., “Über den Spin in der allgemeinen Relativitätstheorie. Eine notwendige Verallgemeinerung der Einsteinschen Feldgleichungen”, Z. Phys., 187, 478–489, (1965). [DOI]. (Cited on page 156.) Hehl, F. W., von der Heyde, P., Kerlick, G. D. and Nester, J. M., “General relativity with spin and torsion: Foundations and prospects”, Rev. Mod. Phys., 48, 393–416, (1976). [DOI]. (Cited on page 156.) Heisenberg, W., “Quantization of non-linear wave equations”, in Bellamy, E. H. and Moorhouse, R. G., eds., The 1954 Glasgow Conference on Nuclear & Meson Physics, International Union of Pure and Applied Physics conference held in Glasgow, Scotland, 13–17 July 1954, pp. 293–295, (Pergamon Press, London, 1955). (Cited on page 192.) Heisenberg, W., “Quantum Theory and its Interpretation”, in Rozental, S., ed., Niels Bohr: His life and work as seen by his friends and colleagues, pp. 94–108, (North-Holland, Amsterdam, 1967). (Cited on page 191.) Hély, J., “Sur une représentation du champ unitaire”, C. R. Hebd. Seanc. Acad. Sci., 238, 1375–1377, (1954). [ARK]. (Cited on page 18.) Hély, J., “Sur la représentation du champ unitaire par un tenseur gik non symétrique”, C. R. Hebd. Seanc. Acad. Sci., 241, 645–647, (1955). [ARK]. (Cited on page 100.) Hély, J., “Modèles statiques à symétrie sphérique en Relativité générale et en théorie de Kaluza-Klein”, C. R. Hebd. Seanc. Acad. Sci., 256, 5291–5293, (1963). [ARK]. (Cited on page 136.) Hély, J., “Solutions statiques à symétrie sphérique des équations de Jordan-Thiry”, C. R. Hebd. Seanc. Acad. Sci., 256, 2784–2785, (1963). [ARK]. (Cited on page 136.) Hely, J., “Solutions statiques des équations de Jordan-Thiry”, C. R. Hebd. Seanc. Acad. Sci., 256, 1933–1934, (1963). [ARK]. (Cited on page 136.) Hennequin, F. G., Étude mathématique des approximations en relativité générale et en théorie unitaire de Jordan-Thiry, (Gauthier-Villars, Paris, 1958). Thèse de doctorat, Paris 1956. (Cited on page 135.) Hinterbichler, K., “Theoretical aspects of massive gravity”, Rev. Mod. Phys., 84, 671–710, (2012). [DOI], [ADS], [arXiv:1105.3735 [hep-th]]. (Cited on page 64.) Hittmair, O., “Schrödinger’s Unified Field Theory Seen 40 Years Later”, in Kilmister, C. W., ed., Schrödinger: Centenary Celebration of a Polymath, pp. 165–175, (Cambridge University Press, Cambridge; New York, 1987). (Cited on pages 10, 48, 55, and 71.) Hlavatý, V., “The Einstein Connection of the Unified Theory of Relativity”, Proc. Natl. Acad. Sci. USA, 38, 415–419, (1952). [DOI]. (Cited on page 112.) Hlavatý, V., “The Elementary Basic Principles of the Unified Theory of Relativity. A”, Indiana Univ. Math. J., 1(4), 539–562 (1952). [DOI]. (Cited on page 90.) Hlavatý, V., “The Schrödinger Final Affine Field Laws”, Proc. Natl. Acad. Sci. USA, 38(12), 1052–1058 (1952). [DOI]. (Cited on page 112.) Hlavatý, V., “The Elementary Basic Principles of the Unified Theory of Relativity B”, J. Rational Mech. Anal., 2(1), 1–52 (1953). (Cited on pages 90, 112, 128, and 144.) Hlavatý, V., “The Elementary Basic Principles of the Unified Theory of Relativity C1: Introduction”, J. Rational Mech. Anal., 3, 103–146, (1954). (Cited on pages 13, 144, and 145.) Hlavatý, V., “The Elementary Basic Principles of the Unified Theory of Relativity C2: Applications I”, J. Rational Mech. Anal., 3, 147–179, (1954). (Cited on page 144.) Hlavatý, V., “The Elementary Basic Principles of the Unified Theory of Relativity C3: Applications II”, J. Rational Mech. Anal., 3, 645–689, (1954). (Cited on page 144.) Hlavatý, V., “Report on the recent Einstein unified field theory”, Rend. Sem. Mat. Univ. Padova, 23, 316–332, (1954). Online version (accessed 12 February 2014): http://www.numdam.org/item?id=RSMUP_1954__23__316_0. (Cited on pages 145 and 146.) Hlavatý, V., “The Elementary Basic Principles of the Unified Theory of Relativity B3”, J. Rational Mech. Anal., 4(5), 653–679 (1955). (Cited on page 112.) Hlavatý, V., “The Elementary Basic Principles of the Unified Theory of Relativity C4. General case”, J. Rational Mech. Anal., 5, 419–472, (1955). (Cited on pages 145, 146, and 147.) Hlavatý, V., “The Elementary Basic Principles of the Unified Theory of the Second Kind, I.”, J. Math. Mech., 7, 323–354, (1958). (Cited on page 147.) Hlavatý, V., “The Elementary Basic Principles of the Unified Theory of the Second Kind, II”., J. Math. Mech., 7, 323–354, 833–866 (1958). (Cited on page 147.) Hlavatý, V., Geometry of Einstein’s Unified Field Theory, (P. Noordhoff, Groningen, 1958). Online version (accessed 23 June 2014): http://www.archive.org/details/geometryofeinste029248mbp. (Cited on pages 10, 13, 111, 112, 144, 146, and 147.) Hlavatý, V. and Sáenz, A. W., “Uniqueness theorems in the unified theory of relativity”, J. Rational Mech. Anal., 2(3), 523–536 (1953). (Cited on page 113.) Hoang, P. T., “L’emploi de la métrique hμν et des champs fμν pour l’obtention des équations du mouvement”, C. R. Hebd. Seanc. Acad. Sci., 241, 170–172, (1955). [ARK]. (Cited on pages 100 and 117.) Hoang, P. T., “Sur le choix de la métrique en théorie unitaire”, C. R. Hebd. Seanc. Acad. Sci., 241, 1919–1921, (1955). [ARK]. (Cited on pages 100, 117, and 123.) Hoang, P. T., “Conditions de conservation pour le tenseur d’impulsion-énergie en théorie unitaire d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 243, 1600–1603, (1956). [ARK]. (Cited on pages 116 and 117.) Hoang, P. T., La méthode des singularités pour les équations du mouvement en relativité générale et en théorie du champ unifié, Ph.D. thesis, (Université de Paris (1896–1968), Faculté des sciences, Paris, 1957). Online version (accessed 12 February 2014): http://www.numdam.org/item?id=ASNSP_1958_3_12_4_425_0. Soc. Tipografica ‘Oderisi’, Gubbio, 1958. Also published in: Ann. Scuola Norm. Sup. Pisa Cl. Sci., Ser. 3, 12, 1958, 425–477 and 13, 1959, 13–75. (Cited on page 123.) Hoffmann, B., “On the New Field Theory”, Proc. R. Soc. London, Ser. A, 148, 353–364, (1934). (Cited on page 46.) Hoffmann, B., “A Generalization of the Einstein-Mayer Field Theory”, Quart. J. Math., 7, 32–42, (1936). [DOI]. (Cited on page 138.) Hoffmann, B., “A Generalization of the Kaluza-Klein Field Theory”, Quart. J. Math., 7, 20–31, (1936). [DOI]. (Cited on pages 34 and 138.) Hoffmann, B., “The Vector Meson Field and Projective Relativity”, Phys. Rev., 72, 458–465, (1947). [DOI]. (Cited on page 28.) Hoffmann, B., “The Gravitational, Electromagnetic, and Vector Meson Field and the Similarity Geometry”, Phys. Rev., 73, 30–35, (1948). [DOI]. (Cited on page 28.) Hoffmann, B., “The Gravitational, Electromagnetic, and Vector Meson Fields and the Similarity Geometry”, Phys. Rev., 73(9), 531–532 (1948). [DOI]. (Cited on page 28.) Hoffmann, B., “The influence of Albert Einstein”, Sci. Am., 180, 53–55, (1949). [DOI]. (Cited on page 78.) Hoffmann, B., ed., Perspectives in Geometry and Relativity: Essays in honor of Václav Hlavatý, (Indiana University Press, Bloomington; London, 1966). (Cited on page 10.) Horváth, J. I., “A Geometrical Model for the Unified Theory of Physical Fields”, Phys. Rev., 80, 901, (1950). [DOI]. (Cited on page 175.) Horváth, J. I., “Contribution to the Final Affine Field Law”, Bull. Acad. Polon. Sci. Cl. III, 3, 151–155, (1955). (Cited on pages 16 and 71.) Horváth, J. I., “Contribution to the Unified Theory of Physical Fields”, Nuovo Cimento, 4, 577–581, (1956). [DOI]. (Cited on pages 143, 162, and 190.) Horváth, J. I. and Moór, A., “Entwicklung einer einheitlichen Feldtheorie begründet auf die Finslersche Geometrie”, Z. Phys., 131, 544–470, (1952). [DOI]. (Cited on page 175.) Hosokawa, T., “Finslerian Wave geometry and Milne’s world-structure”, J. Sci. Hiroshima Univ., Ser. A, 8, 249–270, (1938). (Cited on pages 44 and 160.) Hotta, H., Namiki, M. and Kanenaga, M., “Stochastic quantization of Born-Infeld field”, arXiv, e-print, (2004). [arXiv:hep-th/0405136]. (Cited on page 47.) Howard, D., “Einstein on Locality and Separability”, Stud. Hist. Philos. Sci., 16, 171–201, (1985). [DOI]. (Cited on page 199.) Howard, D., “Einstein and the Development of Twentieth-Century Philosophy of Science”, in Janssen, M. and Lehner, C., eds., The Cambridge Companion to Einstein, Cambridge Companions to Philosophy, 11, pp. 354–376, (Cambridge University Press, New York, 2014). (Cited on page 189.) Husain, S. I., “Sur les discontinuités des tenseurs de courbure en théorie unitaire d’Einstein”, C. R. Hebd. Seanc. Acad. Sci., 246, 3020–3022, (1958). [ARK]. (Cited on page 127.) Husain, S. I., “Sur la propagation des discontinuités du tenseur de courbure en théorie unitaire d’Einstein”, C. R. Hebd. Seanc. Acad. Sci., 248, 2965–2967, (1959). [ARK]. (Cited on page 127.) Husain, S. I., “Sur les discontinuités des tenseurs de courbure en théorie unitaire d’Einstein (systéme faible des équations du champ)”, C. R. Hebd. Seanc. Acad. Sci., 248, 194–196, (1959). [ARK]. (Cited on page 127.) Husain, S.I., Etude des ondes et de la radiation totale en champ unitaire d’Einstein, Ph.D. thesis, (Faculté des Sciences de Paris, Paris, 1960). (Cited on pages 127 and 129.) Husain, S. I., “La radiation totale en théorie unitaire du champ d’Einstein”, C. R. Hebd. Seanc. Acad. Sci., 250, 466–467, (1960). [ARK]. (Cited on pages 127 and 128.) Husain, S. I. and Mishra, R. S., “Projective change of affine connections in Einstein’s unified field”, Tensor, New Ser., 6, 26–31, (1956). (Cited on page 158.) Ikeda, M., “On Static Solutions of Einstein’s Generalized Theory of Gravitation. I”, Prog. Theor. Phys., 12, 17–30, (1954). [DOI]. (Cited on pages 13 and 184.) Ikeda, M., “On Static Solutions of Einstein’s Generalized Theory of Gravitation. II”, Prog. Theor. Phys., 13, 265–275, (1955). [DOI]. (Cited on pages 13, 98, and 184.) Ikeda, M., “On boundary conditions in the Non-Symmetric Unified Field Theory”, Prog. Theor. Phys., 15, 1–11, (1956). [DOI]. (Cited on page 160.) Ikeda, M., “On tensorial concomitants of a non-symmetric tensor gμμ. II.”, Tensor, New Ser., 7, 117–127, (1957). (Cited on page 160.) Ikeda, M. and Abe, S., “On tensorial concomitants of a non-symmetric tensor gμμ. I”, Tensor, New Ser., 7, 59–69, (1957). (Cited on page 160.) Recent Developments in General Relativity: Dedicated to Leopold Infeld in Connection with his 60th Birthday, (Pergamon Press; PWN, New York; Warszawa, 1962). (Cited on pages 10 and 119.) Infeld, L., “The New Einstein Theory and the Equations of Motion”, Nature, 166, 1075, (1950). [DOI]. (Cited on page 83.) Infeld, L., “The New Einstein Theory and the Equations of Motion”, Acta Phys. Pol., 10, 284–293, (1950). (Cited on pages 91 and 97.) Ingraham, R. L., “Contributions to the Schrödinger Non-Symmetric Affine Unified Field Theory”, Ann. Math. (2), 52, 743–752, (1950). [DOI]. (Cited on pages 72 and 114.) Ishiwara, J., “Grundlagen einer relativistischen elektromagnetischen Gravitationstheorie”, Phys. Z., 15, 294–298, (1914). (Cited on page 162.) Ishiwara, J., “Grundlagen einer relativistischen elektromagnetischen Gravitationstheorie, II”, Phys. Z., 15, 506–510, (1914). (Cited on page 162.) Israel, W. and Trollope, R., “New Possibilities for a Unified Field Theory”, J. Math. Phys., 2, 777–786, (1961). [DOI]. (Cited on pages 165 and 190.) Janssen, M., Renn, J., Sauer, T., Norton, J. D. and Stachel, J., “A Commentary on the Notes on Gravity in the Zurich Notebook”, in Renn, J., ed., The Genesis of General Relativity, Vol. 2: Einstein’s Zurich Notebook: Commentary and Essays, Boston Studies in the Philosophy of Science, 250, pp. 541–714, (Springer, Dordrecht, 2007). [DOI]. (Cited on page 189.) Jeavons, J. S., McIntosh, C. B. G. and Sen, D. K., “A correction to the Sen and Dunn gravitational field equations”, J. Math. Phys., 16, 320–321, (1975). [DOI]. (Cited on page 175.) Johnson, C. P., “A Criticism of a Recent Unified Field Theory”, Phys. Rev., 89, 320–321, (1956). (Cited on page 86.) Johnson, C. R., “Equivalence of Einstein’s 1925 unified field theory and his relativistic theory of the nonsymmetric field”, Am. J. Phys., 47, 425, (1979). [DOI]. (Cited on page 58.) Jonsson, C. V., “Studies on five-dimensional relativity theory”, Ark. Fys., 3(8), 87–129 (1951). (Cited on page 133.) Jordan, P., “Zur Neutrinotheorie des Lichtes”, Z. Phys., 93, 464–472, (1935). [DOI]. (Cited on page 8.) Jordan, P., “Beiträge zur Neutrinotheorie des Lichtes. I”, Z. Phys., 102(3–4), 243–252 (1936). (Cited on page 8.) Jordan, P., “Zur projektiven Relativitätstheorie”, Nachr. Akad. Wiss. Goettingen II, Math.-Phys. Kl., 1945, 39–41, (1945). (Cited on pages 29 and 30.) Jordan, P., “Erweiterung der projektiven Relativitätstheorie”, Ann. Phys. (Leipzig), 1, 219–228, (1947). [DOI]. (Cited on page 29.) Jordan, P., “Fünfdimensionale Kosmologie”, Astron. Nachr., 276, 193–208, (1948). [DOI]. (Cited on pages 30 and 31.) Jordan, P., Schwerkraft und Weltall. Grundlage der theoretischen Kosmologie, (Vieweg, Braunschweig, 1952). (Cited on pages 29, 31, 32, and 175.) Jordan, P., Schwerkraft und Weltall, Die Wissenschaft, 133, (Vieweg, Braunschweig, 1955), 2nd edition. (Cited on pages 29, 137, and 175.) Jordan, P. and Müller, C., “Field Equations with a Variable ‘Constant’ of Gravitation”, Z. Naturforsch., 2a, 1–2, (1947). (Cited on pages 30 and 32.) Kaufman, B., “Mathematical Structure of the Non-Symmetric Field Theory”, in Mercier, A. and Kervaire, M., eds., Fünfzig Jahre Relativitätstheorie — Cinquantenaire de la Théorie de la Relativité — Jubilee of Relativity Theory, Proceedings of the conference held in Bern, Switzerland, 11–16 July 1955, Helv. Phys. Acta Suppl., 29, pp. 227–238, (Birkhäuser, Basel, 1956). [DOI]. (Cited on pages and 95.) Kaul, S. K. and Mishra, R. S., “Generalized Veblen’s identities”, Tensor, New Ser., 8, 159–16, (1958). (Cited on page 158.) Kerr, R. P., “On Spherically Symmetric Solutions in Moffat’s Unified Field Theory”, Nuovo Cimento, 8, 789–797, (1958). [DOI]. (Cited on page 152.) Kibble, T. W. B., “Lorentz Invariance and the Gravitational Field”, J. Math. Phys., 2, 212–221, (1961). [DOI]. (Cited on page 156.) Kichenassamy, S., “Sur les conditions d’existence de la solution de \({g_{\underset + \mu \underset - \nu; \rho}} = 0\)”, C. R. Hebd. Seanc. Acad. Sci., 244, 168–170, (1957). [ARK]. (Cited on page 158.) Kichenassamy, S., “Sur un cas particulier de la solution de \({g_{\underset + \mu \underset - \nu; \rho}} = 0\)”, C. R. Hebd. Seanc. Acad. Sci., 244, 2007–2009, (1957). [ARK]. (Cited on page 158.) Kichenassamy, S., “Sur le champ électromagnétique singulier en théorie de Born-Infeld”, C. R. Hebd. Seanc. Acad. Sci., 248, 3690–3692, (1959). [ARK]. (Cited on page 47.) Kilmister, C. W., General Theory of Relativiy: Selected Readings in Physics, (Pergamon Press, Oxford, 1973). (Cited on page 175.) Kilmister, C. W. and Stephenson, G., “An Axiomatic Criticism of Unified Field Theories — I”, Nuovo Cimento, 11, 91–105, (1954). [DOI]. (Cited on page 10.) Kilmister, C. W. and Stephenson, G., “An Axiomatic Criticism of Unified Field Theories — II”, Nuovo Cimento, 11, 118–140, (1954). [DOI]. (Cited on pages 10 and 99.) Klauder, J. R., “Valentine Bargmann 1908–1989”, in Biographical Memoirs, Vol. 76, pp. 36–49, (National Academy Press, Washington, DC, 1999). Online version (accessed 20 May 2014): http://www.nap.edu/openbook.php?record_id=6477. (Cited on page 35.) Klein, O., “On the Theory of Charged Fields”, in New Theories in Physics, Conference organized in collaboration with the International Union of Physics and the Polish Intellectual Co-operation Committee, Warsaw, May 30–June 3, 1938, pp. 77–93, (International Institute of Intellectual Cooperation, Paris, 1939). (Cited on page 34.) Klotz, A. H., Macrophysics and Geometry: From Einstein’s unified field theory to cosmology, (Cambridge University Press, Cambridge; New York, 1982). (Cited on page 10.) Kohler, M., “Die Formulierung der Erhaltungssätze der Energie und des Impulses in der allgemeinen Relativitätstheorie”, Z. Phys., 131, 571–602, (1952). [DOI]. (Cited on page 166.) Kohler, M., “Die Formulierung der Erhaltungssätze der Energie und des Impulses in der allgemeinen Relativitätstheorie. II”, Z. Phys., 134, 286–305, (1953). [DOI]. (Cited on page 166.) Kohler, M., “Zur Herleitung der Feldgleichungen in der allgemein-relativistischen Gravitationstheorie”, Z. Phys., 134, 306–316, (1953). [DOI]. (Cited on page 166.) Kragh, H., “The Genesis of Dirac’s Relativistic Theory of Electrons”, Arch. Hist. Exact Sci., 24, 32–67, (1981). [DOI]. (Cited on page 189.) Kragh, H. S., Dirac: A Scientific Biography, (Cambridge University Press, Cambridge; New York, 1990). [Google Books]. (Cited on pages 192 and 198.) Kremer, H. and Kichenassamy, S., “Sur le champ electromagnétique singulier dans une théorie du type Born-Infeld”, C. R. Hebd. Seanc. Acad. Sci., 250, 1192–1194, (1960). [ARK]. (Cited on page 47.) Kühnel, A. and Schmutzer, E., “Exakte Losung der Feldgleichungen einer einfachen Variante der projektiven Relativitätstheorie für eine geladene Punktsingularität”, Ann. Phys. (Leipzig), 462(5–6), 243–250 (1961). [DOI]. (Cited on page 137.) Kurşunoğlu, B., “On Einstein’s Unified Field Theory”, Phys. Rev., 82, 289–290, (1951). [DOI]. (Cited on page 91.) Kurşunoğlu, B., “Gravitation and Electrodynamics”, Phys. Rev., 88, 1369–1379, (1952). [DOI]. (Cited on pages 91, 116, 152, and 153.) Kurşunoğlu, B., “Correspondence in the Generalized Theory of Gravitation”, Rev. Mod. Phys., 29, 412–416, (1957). [DOI]. (Cited on page 10.) Kurşunoğlu, B., “Relativity and Quantum Theory”, Nuovo Cimento, 15, 729–756, (1960). [DOI]. (Cited on page 149.) Lal, K. B. and Mishra, R. S., “Einstein’s connections. I: Degenerate cases of the first class”, Tensor, New Ser., 10, 218–237, (1960). (Cited on page 158.) Lal, K. B. and Singh, S. P., “The wave solutions of non-symmetric unified field theories of Einstein, Bonnor and Schrödinger”, Tensor, New Ser., 23, 369–375, (1972). (Cited on page 159.) Lamson, K. W., “On the Curvature Tensor of Einstein’s Generalized Theory of Gravitation”, Can. J. Math., 5, 120–128, (1953). [DOI]. (Cited on page 22.) Lanczos, C., “Albert Einstein and the Role of Theory in Contemporary Physics”, American Scientist, 47(3), 41–59 (1959). (Cited on page 186.) Laughlin, R. B. and Pines, D., “The Theory of Everything”, Proc. Natl. Acad. Sci. USA, 97, 28–31, (2000). [DOI]. (Cited on page 196.) Lederer, S., “Sur la quantification en théorie pentadimensionnelle (approximation linéaire)”, C. R. Hebd. Seanc. Acad. Sci., 253, 386–388, (1961). [ARK]. (Cited on page 171.) Lederer, S., “Sur la représentation pentadimensionnelle des particules de spin 2, 1 et 0”, C. R. Hebd. Seanc. Acad. Sci., 252, 3946–3948, (1961). [ARK]. (Cited on page 166.) Lederer, S., “Étude et quantification d’une théorie unitaire pentadimensionnelle”, J. Phys. Radium, 23, 381–385, (1962). [DOI]. (Cited on page 171.) Lederer, S., “Le formalisme lagrangien et son application aux théories minkowskiennes de la gravitation et de l’électromagnétisme”, Cah. Phys., 18, 233–284, (1964). (Cited on pages 167 and 168.) Lederer, S. and Tonnelat, M.-A., “Identités et lois du mouvement déduites d’un lagrangien. Application à la définition de l’impulsion-énergie dans une théorie euclidienne de la gravitation”, Nuovo Cimento, 34, 883–900, (1964). [DOI]. (Cited on page 168.) Lehto, O., Mathematics Without Borders: A History of the International Mathematical Union, (Springer, Berlin; New York, 1998). (Cited on page 11.) Lenoir, M., “Les équations du mouvement en théorie du champ unifié”, Cah. Phys., 14, 331–339, (1956). (Cited on page 118.) Lenoir, M., “Principe d’une théorie unitaire. Interprétation basée sur l’emploi d’un espace fibré”, C. R. Hebd. Seanc. Acad. Sci., 248, 1944–1946, (1959). [ARK]. (Cited on page 111.) Lenoir, M., Sur quelques généralisations de la théorie unitaire d’Einstein-Schrödinger, Ph.D. thesis, (Faculté des Sciences de Paris, Paris, 1962). (Cited on pages 100, 115, and 131.) Leutwyler, H., “Sur une modification des théories pentadimensionnelles destinée à éviter certaines difficultés de la théorie de Jordan-Thiry”, C. R. Hebd. Seanc. Acad. Sci., 251, 2292–2294, (1960). [ARK]. (Cited on page 136.) Levy, J., “Une version modifiée de la théorie du champ unifié d’Einstein”, J. Phys. Radium, 20, 747–750, (1959). [DOI]. (Cited on pages 113, 119, and 123.) Lichnerowicz, A., “Espaces-temps extérieurs réguliers partout”, C. R. Hebd. Seanc. Acad. Sci., 206, 313–316, (1938). [ARK]. (Cited on page 125.) Lichnerowicz, A., “Sur les singularités du ds2 extérieur”, C. R. Hebd. Seanc. Acad. Sci., 206, 157–159, (1938). [ARK]. (Cited on page 125.) Lichnerowicz, A., Sur certaines problèmes globaux relatifs au système des équations d’Einstein, Ph.D. thesis, (Faculté des Sciences de Paris, Paris, 1939). (Cited on page 125.) Lichnerowicz, A., “Sur des théorèemes d’unicité relatifs aux équations gravitationelles du cas intérieur”, Bull. Sci. Math., 65, 54–72, (1941). (Cited on page 128.) Lichnerowicz, A., “Sur l’invariant intégral de l’hydrodynamique relativiste”, Ann. Sci. Ec. Norm. Sup. (3), 58, 285–304, (1941). Online version (accessed 20 June 2014): http://www.numdam.org/item?id=ASENS_1941_3_58__285_0. (Cited on page 128.) Lichnerowicz, A., “Sur le charactère euclidien d’espaces-temps extérieurs statiques partout réguliers”, C. R. Hebd. Seanc. Acad. Sci., 222, 432–434, (1946). [ARK]. (Cited on page 126.) Lichnerowicz, A., “Compatibilité des équations de la théorie unitaire d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 237, 1383–1386, (1953). [ARK]. (Cited on pages 115, 125, 126, and 127.) Lichnerowicz, A., “Compatibilité des Équations de la Théorie Unitaire du Champ d’Einstein”, J. Rational Mech. Anal., 3, 487–521, (1954). (Cited on pages 84, 95, 115, 126, and 127.) Lichnerowicz, A., “Étude des équations de la théorie unitaire d’Einstein”, Rend. Sem. Mat. Fis. Milano, 25, 121–133, (1955). [DOI]. (Cited on pages 115, 125, 126, and 128.) Lichnerowicz, A., Théories relativistes de la gravitation et de l’électromagnétisme: Relativité générale et théories unitaires, (Masson, Paris, 1955). (Cited on pages 10, 12, 23, 100, 115, 125, 126, 128, and 190.) Lichnerowicz, A., “Problèmes généraux d’intégration des équations de la relativité”, in Mercier, A. and Kervaire, M., eds., Fünfzig Jahre Relativitätstheorie — Cinquantenaire de la Théorie de la Relativité — Jubilee of Relativity Theory, Proceedings of the conference held in Bern, Switzerland, 11–16 July 1955, Helv. Phys. Acta Suppl., 29, pp. 176–191, (Birkhäuser, Basel, 1956). [DOI]. (Cited on pages 127 and 128.) Lichnerowicz, A., “Sur un procédé de quantification du champ de gravitation”, C. R. Hebd. Seanc. Acad. Sci., 247, 433–436, (1958). [ARK]. (Cited on page 170.) Lichnerowicz, A., “Ondes Électromagnétiques et Ondes Gravitationnelles en Relativité Générale”, in Costa de Beauregard, O., Dupeyrat, R. and de Broglie, L., eds., Problèmes actuels en théorie de la relativité, Réunion d’études et de mises au point, tenues sous la présidence de Louis de Broglie, p. 51, (Éditions de la Revue d’Optique théorique et instrumentale, Paris, 1959). (Cited on pages 127 and 186.) Lichnerowicz, A., “Propagateurs et commutateurs en relativité générale”, Publ. Math. IHES, 10, 5–56, (1961). [DOI]. (Cited on pages 172 and 173.) Lichnerowicz, A., “Differential Geometry and Physical Theories”, in Hoffmann, B., ed., Perspectives in Geometry and Relativity: Essays in honor of Václav Hlavatý, pp. 1–6, (Indiana University Press, Bloomington; London, 1966). (Cited on page 7.) Lichnerowicz, A., Relativistic Hydrodynamics and Magnetohydrodynamics: Lectures on the Existence of Solutions, Mathematical Physics Monograph Series, (W. A. Benjamin, New York, 1967). ed. Wightman, A. S. (Cited on page 128.) Lichnerowicz, A., “Relativity and Mathematical Physics”, in Pentalo, M. and Finis, I., eds., Relativity, Quanta, and Cosmology in the Development of the Scientific Thought of Albert Einstein, Vol. 2, pp. 403–472, (Johnson, New York, 1979). (Cited on page 172.) Lichnerowicz, A., “Mathematics and General Relativity: A Recollection”, in Eisenstaedt, J. and Kox, A. J., eds., Studies in the History of General Relativity, Proceedings of the 2nd Conference on the History of General Relativity, Luminy, Marseille, France, 6–9 September 1988, Einstein Studies, 3, pp. 103–108, (Birkhäuser, Boston; Basel, 1992). [Google Books]. (Cited on page 125.) Lichnerowicz, A. and Fourès-Bruhat, Y., “Théorème global sur les ds2 extérieurs généraux d’Einstein”, C. R. Hebd. Seanc. Acad. Sci., 226, 2119–2120, (1948). [ARK]. (Cited on page 126.) Lichnerowicz, A. and Thiry, Y., “Problèmes de calcul des variations liés à la dynamique classique et à la théorie unitaire du champs”, C. R. Hebd. Seanc. Acad. Sci., 224, 529–531, (1947). [ARK]. (Cited on pages 133 and 134.) Lichnerowicz, A. and Tonnelat, M. A., eds., Les Théories Relativistes de la Gravitation, Actes du colloque tenu à Royaumont, les 21–27 Juin 1959, Colloques Internationaux du CNRS, 91, (Éditions du CNRS, Paris, 1962). (Cited on pages 10, 101, 118, 120, 121, 170, and 174.) Ludwig, G., “Skalares Materiefeld in der projektiven Relativitätstheorie mit variabler Gravitationskonstante”, Z. Naturforsch., 2a, 482–489, (1947). (Cited on page 29.) Ludwig, G., Fortschritte der projektiven Relativitätstheorie, Die Wissenschaft, 105, (Vieweg, Braunschweig, 1951). (Cited on pages 29 and 31.) Ludwig, G. and Just, K., “Zur Jordanschen Theorie der Materie-Entstehung”, Z. Phys., 143, 472–476, (1955). [DOI]. (Cited on page 125.) Lyra, G., “Éber eine Modifikation der Riemannschen Geometrie”, Math. Z., 54, 52–64, (1951). [DOI]. (Cited on page 174.) Mariot, L. and Pigeaud, P., “Le champ mésonique en théorie hexadimensionnelle”, C. R. Hebd. Seanc. Acad. Sci., 257, 2248–2251, (1963). [ARK]. (Cited on page 136.) Mariot, L. and Pigeaud, P., “Le champ mésonique scalaire en théorie de Jordan-Thiry”, C. R. Hebd. Seanc. Acad. Sci., 257, 621–623, (1963). [ARK]. (Cited on page 140.) Martuscelli, L., “Sopra una possibile modificazione della teoria unitaria de Einstein”, Rend. Ist. Lombardo Sci. Lett., Cl. Sci. Mat. Natur., III. Ser., 88, 607–615, (1955). (Cited on page 163.) Mas, L. and Montserrat, A., “Sur les fronts d’onde en théorie unitaire d’Einstein”, C. R. Hebd. Seanc. Acad. Sci., 252, 382–384, (1961). [ARK]. (Cited on pages 116 and 129.) Mathisson, M., “Das zitternde Elektron und seine Dynamik”, Acta Phys. Pol., 6, 218–227, (1937). (Cited on page 154.) Mathisson, M., “Neue Mechanik materieller Systeme”, Acta Phys. Pol., 6, 163–200, (1937). (Cited on page 154.) Mathisson, M., “Relativistic dynamics of a spinning magnetic particle”, Proc. Cambridge Philos. Soc., 38, 40–60, (1942). [DOI]. (Cited on page 154.) Matsumoto, M., Foundations of Finsler Geometry and Special Finsler Spaces, (Kaiseisha Press, Otsu, Japan, 1986). (Cited on page 12.) Maurer-Tison, F., “Sur les coordonnées isothermes en théorie unitaire”, C. R. Hebd. Seanc. Acad. Sci., 243, 1196–1198, (1956). [ARK]. (Cited on page 123.) Maurer-Tison, F., “Une intérprétation géométrique des équations qui déterminent la connexion affine en fonction du tenseur fondamental en théorie unitaire du champ”, C. R. Hebd. Seanc. Acad. Sci., 245, 995–998, (1957). [ARK]. (Cited on page 17.) Maurer-Tison, F., “L’espace fibré des corepères affines et son rôle fondamental en théorie unitaire d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 246, 240–243, (1958). [ARK]. (Cited on page 17.) Maurer-Tison, F., “Aspects mathématiques de la théorie unitaire du champ d’Einstein”, Ann. Sci. Ec. Norm. Sup. (3), 76, 185–269, (1959). Online version (accessed 20 June 2014): http://www.numdam.org/item?id=ASENS_1959_3_76_3_185_0. (Cited on pages 129, 130, and 131.) Mautner, F. and Schrödinger, E., “Infinitesimal Affine Connections with Twofold Einstein-Bargmann Symmetry”, Proc. R. Irish Acad. A, 50, 223–231, (1945). (Cited on pages 22 and 38.) Mavridès, S., “Courant et charge en théorie unitaire d’Einstein”, C. R. Hebd. Seanc. Acad. Sci., 238, 1643–1644, (1954). [ARK]. (Cited on pages 100 and 101.) Mavridès, S., “Le choix de la métrique et du champ électromagnetique en théorie unitaire d’Einstein”, C. R. Hebd. Seanc. Acad. Sci., 239, 637–640, (1954). [ARK]. (Cited on pages 100 and 101.) Mavridès, S., “Solution non statique à symétrie sphérique des équations de la théorie unitaire d’Einstein”, C. R. Hebd. Seanc. Acad. Sci., 239, 1597–1599, (1954). [ARK]. (Cited on page 98.) Mavridès, S., “Sur le choix de la métrique et du champ électromagnétique en théorie unitaire d’Einstein”, C. R. Hebd. Seanc. Acad. Sci., 238, 1566–1568, (1954). [ARK]. (Cited on page 100.) Mavridès, S., “Choix de la métrique et du champ électromagnétique en théorie unitaire d’Einstein. Lien avec la théorie de Born-Infeld”, J. Phys. Radium, 16, 482–488, (1955). [DOI]. (Cited on page 100.) Mavridès, S., étude quantitative de l’isohémagglutination des hématies du groupe A, (Besancon: Jacques & Demontrond, Paris, 1955). Thèse de doctorat, Paris 1953. (Cited on page 122.) Mavridès, S., “La solution générale des équations d’Einstein gμ+ν−ρ = 0”, C. R. Hebd. Seanc. Acad. Sci., 241, 173–174, (1955). [ARK]. (Cited on page 113.) Mavridès, S., “Sur une nouvelle définition du courant et de la charge en théorie unitaire d’Einstein”, C. R. Hebd. Seanc. Acad. Sci., 240, 404–406, (1955). [ARK]. (Cited on page 101.) Mavridès, S., “Étude algébrique d’un tenseur métrique et d’un champ électromagnétique général en théorie unitaire d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 244, 1149–1151, (1957). [ARK]. (Cited on page 129.) Mavridès, S., “Identités de Bianchi et identités de conservation en théorie unitaire d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 244, 2482–2484, (1957). [ARK]. (Cited on page 115.) Mavridès, S., “Le tenseur d’impulsion-énergie électromagnétique en présence de matière chargée”, C. R. Hebd. Seanc. Acad. Sci., 249, 637–639, (1959). [ARK]. (Cited on page 45.) Mavridès, S., “Mouvement d’une planète en théorie du graviton”, C. R. Hebd. Seanc. Acad. Sci., 253, 2478–2480, (1961). [ARK]. (Cited on pages 166 and 168.) Mavridès, S., “Énergie gravitationelle en théorie euclidienne du champ de gravitation”, C. R. Hebd. Seanc. Acad. Sci., 255, 2232–2234, (1962). [ARK]. (Cited on page 167.) Mavridès, S., “Vérifications expérimentales et théorie euclidienne du champ de gravitation”, C. R. Hebd. Seanc. Acad. Sci., 257, 4139–4142, (1963). [ARK]. (Cited on pages 167 and 168.) Mavridès, S., “Trajectoires des satellites dans le champ de gravitation d’une sphère en rotation, en théorie minkowskienne linéaire”, C. R. Hebd. Seanc. Acad. Sci., 258, 4655–4658, (1964). [ARK]. (Cited on page 168.) Mavridès, S., “Rayonnement d’une particule et loi du mouvement. Comparaison entre la Relativité générale et une méthode phénoménologique”, C. R. Hebd. Seanc. Acad. Sci., 261, 3549–3552, (1965). [ARK]. (Cited on page 169.) Mavridès, S., “Gravitational Radiation and Renormalization of Mass in General Relativity and in a Lorenz-Invariant Theory”, Nuovo Cimento, 45, 859–866, (1966). [DOI]. (Cited on page 169.) Mavridès, S., L’Univers Relativiste, (Masson, Paris, 1973). (Cited on page 122.) Mavridès, S., “Marie-Antoinette Tonnelat (1912–1980)”, Ann. Inst. Henri Poincare A, 38, 1–6, (1983). Online version (accessed 14 May 2013): http://www.numdam.org/item?id=AIHPA_1983__38_1_1_0. (Cited on page 104.) McConnell, J. and Schrödinger, E., “The Shielding Effect of Planetary Magnetic Fields”, Proc. R. Irish Acad. A, 49, 259–273, (1944). (Cited on page 51.) McCrea, W. H., “The Meaning of Relativity”, Math. Gaz., 35, 127–129, (1951). [DOI]. (Cited on page 82.) Meksyn, D., “Unified Field Theory, Part I: Electromagnetic Field”, Philos. Mag., 17, 99–112, (1934). (Cited on page 140.) Meksyn, D., “Unified Field Theory, Part II: Gravitation”, Philos. Mag., 17, 476–482, (1934). (Cited on page 140.) Migdal, A. A., “Paradise Lost. Part One”, personal homepage, Migdal, A. A. URL (accessed 11 February 2014): http://alexandermigdal.com/prose/paradise1.shtml. (Cited on page 197.) Miller, A. I., Early Quantum Electrodynamics: A Source Book, (Cambridge University Press, Cambridge; New York, 1994). [Google Books]. (Cited on page 7.) Mimura, Y., “Relativistic Quantum Mechanics and Wave Geometry”, J. Sci. Hiroshima Univ., Ser. A, 5, 99–106, (1935). (Cited on page 43.) Mimura, Y. and Hosokawa, T., “Space, time, and laws of nature”, in Mimura, Y., Takeno, H., Sakuma, K. and Ueno, Y., eds., Wave Geometry II, Scientific Reports of the Research Institute for Theoretical Physics, 6, (Hiroshima University, Takehara, 1967). (Cited on page 189.) Mimura, Y. and Takeno, H., eds., Wave Geometry I, Scientific Reports of the Research Institute for Theoretical Physics, 2, (Hiroshima University, Takehara, 1962). (Cited on pages 43 and 44.) Mimura, Y., Takeno, H., Sakuma, K. and Ueno, Y., eds., Wave Geometry II, Scientific Reports of the Research Institute for Theoretical Physics, 6, (Hiroshima University, Takehara, 1967). (Cited on pages 43, 44, and 189.) Mishra, R. S., “Basic Principles of Unified Field Theory”, Nuovo Cimento, 4, 907–916, (1956). [DOI]. (Cited on page 158.) Mishra, R. S., “The Field Equations of Einstein’s and Schrödinger’s Unified Theory”, Tensor, New Ser., 6, 83–89, (1956). (Cited on pages 20 and 24.) Mishra, R. S., “Einstein’s Connections, II. Nondegenerate Case”, J. Math. Mech., 7(6), 867–892 (1958). (Cited on page 158.) Mishra, R. S., “Einstein’s Connections: III — Degenerate Cases of Second Class”, Nuovo Cimento, 10, 965–984, (1958). [DOI]. (Cited on page 158.) Mishra, R. S., “A Study of Einstein’s Equations of Unified Field”, Nuovo Cimento, 8, 632–642, (1958). [DOI]. (Cited on page 97.) Mishra, R. S., “Einstein’s connections”, Tensor, New Ser., 9, 8–43, (1959). (Cited on pages 112 and 158.) Mishra, R. S., “n-dimensional considerations of unified theory of relativity. Recurrence relations”, Tensor, New Ser., 9, 217–225, (1959). (Cited on page 158.) Mishra, R. S., “Solutions of Gauge-invariant Generalization of Field Theories with Asymmetric Fundamental Tensor”, Quart. J. Math., 14, 81–85, (1963). [DOI]. (Cited on page 157.) Mishra, R. S. and Abrol, M. L., “Equations of motion in unified field theory. I.”, Tensor, New Ser., 10, 151–160, (1960). (Cited on page 97.) Misner, C. W., Thorne, K. S. and Wheeler, J. A., Gravitation, (W. H. Freeman, San Francisco, 1973). [ADS]. (Cited on pages 14 and 137.) Moffat, J., “Generalized Riemannian Spaces”, Proc. Cambridge Philos. Soc., 52, 623–625, (1956). [DOI]. (Cited on pages 151 and 175.) Moffat, J., “The foundations of a generalization of gravitation theory”, Proc. Cambridge Philos. Soc., 53, 473–488, (1957). [DOI]. (Cited on pages 151, 152, and 165.) Moffat, J., “The Static Spherically Symmetric Solutions in a Unified Field Theory”, Proc. Cambridge Philos. Soc., 53, 489–493, (1957). [DOI]. (Cited on pages 152 and 165.) Moffat, J., “On the Motion of Charged Particles in the Complex-Symmetric Unified Field Theory”, Nuovo Cimento, 7, 107–109, (1958). [DOI]. (Cited on page 152.) Moffat, J. W. and Boal, D. H., “Solutions of the nonsymmetric unified field theory”, Phys. Rev. D, 11, 1375–1382, (1975). [DOI]. (Cited on page 192.) Montserrat, A. and Mas, L., “Sur les fronts d’onde en théorie unitaire d’Einstein. Cas d’une characteristique de Maurer-Tison”, C. R. Hebd. Seanc. Acad. Sci., 252, 1110–1112, (1961). [ARK]. (Cited on page 129.) Montserrat, A. and Mas, L., “Sur les fronts d’onde en théorie unitaire d’Einstein. Étude générale”, C. R. Hebd. Seanc. Acad. Sci., 252, 3751–3753, (1961). [ARK]. (Cited on page 129.) Moore, W., Schrödinger: Life and Thought, (Cambridge University Press, Cambridge; New York, 1990). [Google Books]. (Cited on pages 65, 67, 68, 69, 70, 96, 105, 192, and 196.) Moore, W., A Life of Erwin Schrödinger, (Cambridge University Press, Cambridge; New York, 1994). [Google Books]. (Cited on page 65.) Morette-DeWitt, C. and DeWitt, B. S., “Sur une théorie unitaire à cinq dimensions. I. Lagrangien”, C. R. Hebd. Seanc. Acad. Sci., 241, 167–168, (1955). [ARK]. (Cited on page 171.) Morette-DeWitt, C. and DeWitt, B. S., “Sur une théorie unitaire à cinq dimensions. II. Hamiltonien. Relations de commutation”, C. R. Hebd. Seanc. Acad. Sci., 241, 279–281, (1955). [ARK]. (Cited on page 171.) Motz, L., “Gauge Invariance and Classical Electrodynamics”, Phys. Rev., 89, 60–66, (1953). [DOI]. (Cited on page 59.) Muñoz, C., “Desperately Seeking the Standard Model”, in Sanz, V., Abel, S., Santiago, J. and Faraggi, A., eds., String Phenomenology 2003, Proceedings of the 2nd International Conference on String Phenomenology, Durham, UK, 4 July–4 August 2003, pp. 357–377, (World Scientific, Singapore, 2004). [DOI], [ADS], [arXiv:hep-ph/0312091]. (Cited on page 195.) Murphy, G. L., “A Unified Einstein-Yukawa Theory”, Prog. Theor. Phys., 58(5), 1622–1626 (1977). [DOI]. (Cited on page 190.) Narlikar, V. V., “From General Relativity to a Unified Field Theory”, in Narlikar, V. V., ed., Proceedings of the Fortieth Indian Science Congress, Part II, Section 1: Mathematics, Lucknow, India 1953, pp. 1–20, (Indian Science Congress, Calcutta, 1954). Presidential Address. (Cited on page 10.) Narlikar, V. V. and Tiwari, R., “On Einstein’s generalized theory of gravitation”, Proc. Natl. Inst. Sci. India, 15, 73–79, (1949). (Cited on page 111.) Neddermeyer, S. H. and Anderson, C. D., “Note on the Nature of Cosmic-Ray Particles”, Phys. Rev., 51, 884–886, (1937). [DOI], [ADS]. (Cited on page 8.) Nguyen, P.-C., “Contribution à l’étude des théories du champ unifié du type théorie d’Einstein-Schrödinger”, Ann. Inst. Henri Poincare, 18(4), 303–357 (1964). (Cited on pages 124 and 125.) Norton, J. D., “Einstein, Nordström and the Early Demise of Scalar, Lorentz-Covariant Theories of Gravitation”, Arch. Hist. Exact Sci., 45, 17–94, (1992). [DOI]. (Cited on page 162.) Norton, J. D., “’Nature is the Realisation of the Simplest Conceivable Mathematical Ideas’: Einstein and the Canon of Mathematical Simplicity”, Stud. Hist. Phil. Mod. Phys., 31, 135–170, (2000). [DOI]. (Cited on page 189.) Norton, J. D., “Little boxes: A simple implementation of the Greenberger, Horne, and Zeilinger result for spatial degrees of freedom”, Am. J. Phys., 79, 182–188, (2011). [DOI]. (Cited on page 200.) Nye, M. J., Blackett: Physics, War, and Politics in the Twentieth Century, (Harvard University Press, Cambridge, 2004). (Cited on page 51.) O’Connor, D. J. and Stephens, C. R., “Geometry, the Renormalization Group and Gravity”, in Hu, B. L., Ryan Jr, M. P. and Vishveshwara, C. V., eds., Directions in General Relativity, Vol. 1, Proceedings of the 1993 International Symposium, Maryland: Papers in honor of Charles Misner, pp. 272–287, (Cambridge University Press, Cambridge; New York, 1993). (Cited on page 196.) Oppenheimer, R., Robert Oppenheimer: Letters and Recollections, Stanford Nuclear Age Series, (Harvard University Press, Cambridge, MA; London, 1980). eds. Smith, A. K. and Weiner, C. (Cited on page 178.) O’Raifeartaigh, L., The Dawning of Gauge Theory, Princeton Series in Physics, (Princeton University Press, Princeton, NJ, 1997). [Google Books]. (Cited on page 139.) O’Raifeartaigh, L. and Straumann, N., “Gauge theory: Historical origins and some modern developments”, Rev. Mod. Phys., 72, 1–23, (2000). [DOI]. (Cited on page 9.) Osborne, M. F. M., “Quantum theory restrictions on the General Theory of Relativity”, Phys. Rev., 75, 1579–1584, (1949). [DOI]. (Cited on page 40.) Pais, A., “The Energy-momentum Tensor in Projective Relativity”, Physica, 8, 1137–1160, (1941). [DOI]. (Cited on page 27.) Pais, A., “Meson fields in projective space”, Physica, 9, 267–284, (1942). [DOI]. (Cited on page 27.) Pais, A., “ω-space theory”, in Imai, I., ed., Proceedings of the International Conference of Theoretical Physics 1953, Kyoto and Tokyo, September 1953, pp. 156–161, (Science Council of Japan, Tokyo, 1954). (Cited on page 139.) Pais, A., ‘Subtle is the Lord …’: The Science and the Life of Albert Einstein, (Oxford University Press, Oxford; New York, 1982). [Google Books]. (Cited on pages 10, 57, 80, and 88.) Pais, A., Inward Bound: Of Matter and Forces in the Physical World, (Oxford University Press, Oxford; New York, 1986). (Cited on page 7.) Pais, A., Einstein lived here, (Oxford University Press, New York, 1994). (Cited on page 91.) Pais, A., Ich vertraue auf Intuition: Der andere Albert Einstein, (Spektrum Akademischer Verlag, Heidelberg, 1995). (Cited on page 91.) Pantaleo, M., ed., Cinquant’anni di relatività. Prefazione di Albert Einstein, (Editrice Universitaria, Firenze, 1955), 2nd edition. (Cited on pages 9, 19, 101, 111, and 161.) Papapetrou, A., “The question of non-singular solutions in the generalized theory of gravitation”, Phys. Rev., 73, 1105–1108, (1948). [DOI]. (Cited on pages 74 and 126.) Papapetrou, A., “Static Spherically Symmetric Solutions in the Unitary Field Theory”, Proc. R. Irish Acad. A, 52, 69–86, (1948). (Cited on pages 73, 95, 100, and 114.) Papapetrou, A., “A 4-dimensional Generalization of Wilson’s Hypothesis”, Philos. Mag., 41, 399–404, (1950). (Cited on page 52.) Papapetrou, A., “Le problème du mouvement dans la Relativité générale et dans la théorie du champ unifié d’Einstein”, Ann. Inst. Henri Poincare, 15, 173–203, (1957). Online version (accessed 19 May 2014): http://www.numdam.org/item?id=AIHP_1957__15_3_173_0. (Cited on pages 117 and 118.) Papapetrou, A., “Un théorème en théorie du champ unifié à gμν non symétrique”, C. R. Hebd. Seanc. Acad. Sci., 252, 2821–2823, (1961). [ARK]. (Cited on page 98.) Papapetrou, A. and Schrödinger, E., “The Point-Charge in the Non-symmetric Field Theory”, Nature, 168, 40–41, (1951). [DOI]. (Cited on page 98.) Pastori, M., “Sui tensori emisotropi coniugati”, Rend. Lincei, Ser. VI, 13, 109–114, (1931). (Cited on page 161.) Pastori, M., “Proprietà dei tensori emisimmetrici coniugati”, Rend. Lincei, Ser. VI, 16, 311–316, (1932). (Cited on page 161.) Pastori, M., “Tensori emisimmetrici coniugati”, Rend. Lincei, Ser. VI, 16, 216–220, (1932). (Cited on page 161.) Pastori, M., “Sull’ufficio del tensore fondamentale nell’ultima teoria di Einstein”, Rend. Ist. Lombardo Sci. Lett., Cl. Sci. Mat. Natur., III. Ser., 84, 509–518, (1951). (Cited on page 161.) Pastori, M., “Sulle equazioni del campo elettromagnetico nell’ultima teoria di Einstein”, Rend. Lincei, 12, 302–307, (1952). (Cited on pages 19 and 161.) Pastori, M., “Sullo spazio della recente teoria unitaria di Einstein”, in Convegno Internazionale di Geometria Differenziale, Proceedings of the conference held in Venezia, Bologna, Pisa, Italy, 20–26 September 1953, pp. 107–113, (Edizioni Cremonese, Roma, 1954). (Cited on pages 17, 61, and 161.) Pauli, W., “Schlußwort durch den Präsidenten der Konferenz”, in Mercier, A. and Kervaire, M., eds., Fünfzig Jahre Relativitätstheorie — Cinquantenaire de la Théorie de la Relativité — Jubilee of Relativity Theory, Proceedings of the conference held in Bern, Switzerland, 11–16 July 1955, Helv. Phys. Acta Suppl., 29, pp. 261–267, (Birkhäuser, Basel, 1956). Online version (accessed 13 February 2014): http://retro.seals.ch/digbib/view?pid=hpa-001:1956:29::861. (Cited on pages 95 and 127.) Pauli, W., Relativitätstheorie, (P. Boringhieri, Torino, 1963). Reprint with annotations from the 1958 English edition. (Cited on page 121.) Pauli, W., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Band II: 1930–1939, Sources in the History of Mathematics and Physical Sciences, 6, (Springer, Berlin; New York, 1985). [DOI]. ed. von Meyenn, K. (Cited on page 46.) Pauli, W., Wolfgang Pauli. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a, Bd. III: 1940–1949, Sources in the History of Mathematics and Physical Sciences, 11, (Springer, Berlin; New York, 1993). [DOI]. ed. von Meyenn, K. (Cited on pages 52, 63, 67, 70, 71, 76, 99, 125, 126, 133, 180, 188, and 191.) Pauli, W., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. Band IV, Teil I: 1950–1952, Sources in the History of Mathematics and Physical Sciences, 14, (Springer, Berlin; New York, 1996). [DOI]. ed. von Meyenn, K. (Cited on pages 30, 82, 83, 134, and 198.) Pauli, W., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. Band IV, Teil II: 1953–1954, Sources in the History of Mathematics and Physical Sciences, 15, (Springer, Berlin; New York, 1999). [DOI]. ed. von Meyenn, K. (Cited on pages 9, 32, 33, 134, 135, 139, 198, 199, and 200.) Pauli, W., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Band IV, Teil III: 1955–1956, Sources in the History of Mathematics and Physical Sciences, 17, (Springer, Berlin; New York, 2001). [DOI]. von Meyenn, K. (Cited on pages 31, 32, and 94.) Pauli, W., Wolfgang Pauli. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a, Bd. IV, Teil IV, A: 1957, Sources in the History of Mathematics and Physical Sciences, 18, (Springer, Berlin; New York, 2005). [DOI]. ed. von Meyenn, K. (Cited on pages 9 and 200.) Pétiau, G., “Recherches sur un modèle de représentation unifiée du système des particules élémentaires”, Cah. Phys., 16(148), 491–516 (1962). (Cited on page 191.) Pigeaud, P., Contributions à l’étude des approximations en théorie unitaire pentadimensionnelle de Jordan-Thiry, Ph.D. thesis, (Faculté des Sciences de Paris, Paris, 1962). (Cited on pages 136 and 181.) Pigeaud, P., “Unified Fields in Pentadimensional Theory”, Rep. Math. Phys., 14, 261–284, (1978). [DOI]. (Cited on page 136.) Pinl, M., “Begriff und Ziel der einheitlichen Feldtheorien”, Math.-Phys. Semesterber., 4(3–4), 183–194 (1955). (Cited on page 10.) Podolanski, J., “Unified field theory in six dimensions”, Proc. R. Soc. London, Ser. A, 201, 234–260, (1950). [DOI]. (Cited on pages 138 and 139.) Poyet, M., “Sur le choix d’un tenseur d’énergie-impulsion gravitationelle en théorie euclidienne de la gravitation”, C. R. Hebd. Seanc. Acad. Sci., 256, 3594–3596, (1963). [ARK]. (Cited on page 168.) Proca, A., “Ce que nous devons à Einstein”, in Proca, G. A., ed., Alexandre Proca, 1897–1955: Œeuvre scientifique publiée, p. 727, (G. A. Proca, Paris, 1988). Obituary Albert Einstein, Le Figaro Littéraire, 23 Avril 1955. (Cited on page 193.) Quan, P. M., Sur une théorie relativiste des fluides thermodynamiques, (Cooperativa Tipografica Azzoguidi, Bologna, 1955). Thèse de doctorat, Paris 21. 6. 1954. (Cited on page 128.) Rao, B. R., “The External Field of a Non-Static Centrally Symmetric Isolated System in the Unified Field Theory”, Proc. Natl. Inst. Sci. India, 19, 723–738, (1953). (Cited on pages 59 and 98.) Rao, J. R., “Rigorous solution of Einstein’s unified theory for a special type of symmetry”, Acta Phys. Austriaca, 12, 251–261, (1959). (Cited on page 100.) Rao, J. R., “Unified theories of Einstein and Schrädinger”, J. Math. Phys. Sci., 6, 381–418, (1972). (Cited on pages 10 and 184.) Renaudie, J., “Théories unitaires à six dimensions. Equations du champ”, C. R. Hebd. Seanc. Acad. Sci., 240, 399–401, (1955). [ARK]. (Cited on page 139.) Renaudie, J., “Théories unitaires à six dimensions. Interprétation pour le champ mésonique-électromagnétique”, C. R. Hebd. Seanc. Acad. Sci., 240, 2380–2382, (1955). [ARK]. (Cited on pages 139 and 140.) Renaudie, J., “Étude mathématique d’une théorie hexadimensionnelle du champ unifié”, Bull Sci. Com. Trav. Hist. Sci., 1, 1–72, (1957). (Cited on page 139.) Renaudie, J., “Théorie hexadimensionnelle du champ de certaines particules”, Sem. Janet, 2(2), 1–8 (1958–1959). Online version (accessed 11 February 2014): http://www.numdam.org/item?id=SJ_1958-1959__2__A2_0. (Cited on page 139.) Rickayzen, G. and Kurşunoğlu, B., “Unified Field Theory and Born-Infeld Electrodynamics”, Phys. Rev., 89, 522–523, (1953). [DOI]. (Cited on page 153.) Riemann, B., Über die Hypothesen, die der Geometrie zu Grunde liegen, (Wissenschaftliche Buchgesellschaft, Darmstadt, 1959). Reprint. (Cited on page 12.) Roche, C., “Sur la quantification du champ à l’approximation linéaire en théorie unitaire de Jordan-Thiry”, C. R. Hebd. Seanc. Acad. Sci., 250, 3128–3130, (1960). [ARK]. (Cited on page 171.) Romain, J., “Invariants différentiels d’un espace non riemannian”, C. R. Hebd. Seanc. Acad. Sci., 244, 2777–2779, (1957). [ARK]. (Cited on page 13.) Romain, J., “Invariants différentiels d’un tenseur asymétrique du second ordre à quatre dimensions”, C. R. Hebd. Seanc. Acad. Sci., 251, 1336–1338, (1960). [ARK]. (Cited on page 13.) Romain, J., “Invariants différentiels de connexion d’un espace non-riemannian”, C. R. Hebd. Seanc. Acad. Sci., 254, 2928–2930, (1962). [ARK]. (Cited on page 13.) Rosen, N., “General Relativity and Flat Space. I”, Phys. Rev., 57, 147–150, (1940). [DOI]. (Cited on page 166.) Rosen, N., “General Relativity and Flat Space. II”, Phys. Rev., 57, 150–153, (1940). [DOI]. (Cited on page 166.) Rosenfeld, L., “Dr. Julius Podolanski”, Nature, 175, 795–796, (1955). (Cited on page 138.) Rosenfeld, L., “Niels Bohr in the Thirties”, in Rozental, S., ed., Niels Bohr. His life and work as seen by his friends and colleagues, pp. 114–136, (North-Holland, Amsterdam, 1967). (Cited on page 191.) “Rotation and Terrestrial Magnetism”, Observatory, 69, 100–105, (1949). [ADS]. (Cited on page 52.) Sáenz, A. W., “Elementare Herleitung der von Hlavatý angegebenen kanonischen Formen für den elektromagnetischen Tensor in der einheitlichen Feldtheorie”, Z. Phys., 138, 489–498, (1954). [DOI]. (Cited on page 144.) Sánchez, N. G., “String Quantum Gravity”, in Sánchez, N. and Zichichi, A., eds., String Quantum Gravity and Physics at the Planck Energy Scale, International worshop on theoretical physics (Second Chalonge Course), Erice, Sicily, 21–28 June 1992, The Science and Culture Series, pp. 1–69, (World Scientific, Singapore; New Jersey, 1993). (Cited on page 196.) Sánchez, N. G., “Conceptual unification of elementary particles, black holes, quantum de Sitter and Anti de Sitter string states”, Int. J. Mod. Phys. A, 19, 4173–4200 (2004). [DOI]. (Cited on page 196.) Sánchez-Ron, J. M., “George McVittie, The Uncompromising Empiricist”, in Kox, A. J. and Eisenstaedt, J., eds., The Universe of General Relativity, Based on the Proceedings of the 6th International Conference on the History of General Relativity, held in Amsterdam on June 26–29, 2002, Einstein Studies, 11, pp. 189–221, (Birkhäuser, Boston; Basel, 2005). [DOI]. (Cited on page 10.) Santalò, L. A., “On Einstein’s Unified Field Theory”, in Hoffmann, B., ed., Perspectives in Geometry and Relativity: Essays in honor of Váaclav Hlavatý, pp. 343–352, (Indiana University Press, Bloomington, IN, 1966). (Cited on pages 17, 22, and 187.) Santalò, L. A., “Unified field theories of Einstein’s type deduced from a variational principle: Conservation laws”, Tensor, New Ser., 25, 383–389, (1972). (Cited on page 187.) Sarkar, R., “Rigorous Static Solution Corresponding to a Particular Form of the Fundamental Tensor in Schrödinger Unified Field Theory”, J. Math. Mech., 14, 183–193, (1965). (Cited on pages 69 and 159.) Sarkar, R., “On solutions of Schrödinger’s unified field equations corresponding to a particular form of the fundamental non-symmetric tensor”, Tensor, New Ser., 17, 227–237, (1966). Addendum: ibid. 19, 51–54 (1968). (Cited on page 159.) Sauer, T., “Field-equations in teleparalell space-time: Einstein’s Fernparallelismus approach toward unified field theory”, Historia Math., 33, 399–439, (2006). [DOI], [physics/0405142]. (Cited on page 10.) Sauer, T., “Einstein’s Unified Field Theory Program”, in Janssen, M. and Lehner, C., eds., The Cambridge Companion to Einstein, Cambridge Companions to Philosophy, 9, pp. 281–304, (Cambridge University Press, New York, 2014). (Cited on page 10.) Schaffhauser-Graf, E., “Versuch einer 4-dimensionalen einheitlichen Feldtheorie der Gravitation und des Elektromagnetismus”, J. Rational Mech. Anal., 2, 743–765, (1953). (Cited on page 175.) Scheibe, E., “Über einen verallgemeinerten affinen Zusammenhang”, Math. Z., 57, 65–74, (1952). [DOI]. (Cited on page 174.) Scherrer, W., “Zur Theorie der Elementarteilchen”, Verh. Schweiz. Naturf. Gesellsch., 121, 86–87, (1941). Online version (accessed 20 June 2014): http://retro.seals.ch/digbib/view?pid=sng-005:1941:121::94. (Cited on page 32.) Scherrer, W., “Über den Einfluss des metrischen Feldes auf ein skalares Materiefeld”, Helv. Phys. Acta, 22, 537–551, (1949). [DOI]. (Cited on page 32.) Scherrer, W., “A propos des théories unitaires du champ”, C. R. Hebd. Seanc. Acad. Sci., 237, 554–555, (1953). [ARK]. (Cited on page 32.) Scherrer, W., “Grundlagen zu einer linearen Feldtheorie”, Z. Phys., 138, 16–34, (1954). (Cited on page 32.) Schilpp, P. A., ed., Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers, VII, (Tudor, New York, 1949). (Cited on page 78.) Schouten, J. A., Der Ricci-Kalkül, (Springer, Berlin, 1924). (Cited on pages 14, 20, and 35.) Schouten, J. A., “La théorie projective de la relativité”, Ann. Inst. Henri Poincare, 5(1), 51–88 (1935). (Cited on page 178.) Schouten, J. A., “On Meson Fields and Conformal Transformations”, Rev. Mod. Phys., 21, 421–424, (1949). [DOI]. (Cited on pages 42 and 78.) Schouten, J. A., Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications, Die Grundlehren der Mathematischen Wissenschaften, X, (Springer, Berlin; Heidelberg, 1954), 2nd edition. [DOI]. (Cited on pages 14, 15, 18, 142, and 178.) Schrödinger, E., “Über die Unanwendbarkeit der Geometrie im Kleinen”, Naturwissenschaften, 22, 518–520, (1934). [DOI]. (Cited on page 43.) Schrödinger, E., “Contributions to Born’s New Theory of the Electromagnetic Field”, Proc. R. Soc. London, Ser. A, 150, 465–477, (1937). (Cited on page 47.) Schrödinger, E., “Sur la théorie du monde d’Eddington”, Nuovo Cimento, 15, 246–254, (1938). [DOI]. (Cited on page 8.) Schrödinger, E., “The Earth’s and the Sun’s Permanent Magnetic Fields in the Unitary Field Theory”, Proc. R. Irish Acad. A, 49, 135–148, (1943). (Cited on page 51.) Schrödinger, E., “The General Unitary Theory of the Physical Fields”, Proc. R. Irish Acad. A, 49, 43–56, (1943). (Cited on pages 48, 50, 101, and 105.) Schrödinger, E., “Systematics of Meson-Matrices”, Proc. R. Irish Acad. A, 49, 29–42, (1943). (Cited on pages 48 and 178.) Schrödinger, E., “The Affine Connexion in Physical Field Theories”, Nature, 153, 572–575, (1944). [DOI]. (Cited on page 55.) Schrödinger, E., “The Point Charge in the Unitary Field Theory”, Proc. R. Irish Acad. A, 49, 225–235, (1944). (Cited on pages 52, 53, and 178.) Schrödinger, E., “The Union of the three Fundamental Fields (Gravitation, Meson, Electromagnetism)”, Proc. R. Irish Acad. A, 49, 275–287, (1944). (Cited on pages 21, 53, 55, 56, 65, 101, and 105.) Schrödinger, E., “On Distant Affine Connection”, Proc. R. Irish Acad. A, 50, 143–154, (1945). (Cited on page 38.) Schrödinger, E., “The General Affine Field Laws”, Proc. R. Irish Acad. A, 51, 41–50, (1946). (Cited on pages 8, 65, 66, 67, and 184.) Schrödinger, E., “The Final Affine Field Laws I.”, Proc. R. Irish Acad. A, 51, 163–171, (1947). (Cited on pages 68, 69, 70, 72, and 89.) Schrödinger, E., “The Relation Between Metric and Affinity”, Proc. R. Irish Acad. A, 51, 147–150, (1947). (Cited on page 158.) Schrödinger, E., “The Final Affine Field Laws. II.”, Proc. R. Irish Acad. A, 51, 205–216, (1948). (Cited on page 51.) Schrödinger, E., “The Final Affine Field Laws II.”, Proc. R. Irish Acad. A, 51, 205–216, (1948). (Cited on pages 71, 72, and 115.) Schrödinger, E., “The Final Affine Field Laws III.”, Proc. R. Irish Acad. A, 52, 1–9, (1948). (Cited on pages 80 and 115.) Schrödinger, E., Space-Time Structure, (Cambridge University Press, Cambridge; New York, 1950). [Google Books]. (Cited on pages 10, 68, 95, 96, and 102.) Schrödinger, E., “Studies in the Non-Symmetric Generalization of the Theory of Gravitation. I”, Commun. Dublin Inst. Adv. Stud. A, 6, 551–579, (1951). (Cited on pages 72, 74, 114, and 162.) Schrödinger, E., “Electric Charge and Current Engendered by Combined Maxwell-Einstein Fields”, Proc. R. Irish Acad. A, 56, 13–21, (1954). (Cited on page 96.) Schulmann, R., ed., Seelenverwandte: Der Briefwechsel zwischen Albert Einstein und Heinrich Zangger 1910–1947, (Verlag Neue Zürcher Zeitung, Zürich, 2012). (Cited on pages 34 and 63.) Schwarz, J. H., “Status of Superstring and M-Theory”, Int. J. Mod. Phys. A, 25, 4703–4725, (2010). [DOI], [arXiv:0812.1372]. (Cited on page 195.) Schweber, S. S., QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, (Princeton University Press, Princeton, NJ, 1994). [Google Books]. (Cited on page 7.) Schweber, S. S., “Einstein and Nuclear Weapons”, in Galison, P. L., Holton, G. and Schweber, S. S., eds., Einstein for the 21st Century: His Legacy in Science, Art, and Modern Culture, pp. 72–97, (Princeton University Press, Princeton, 2008). (Cited on page 198.) “A new Einstein theory?”, Sci. Am., 182 (January), 26 (1950). Editorial note. (Cited on pages 8 and 80.) Sciama, D. W., “On a non-symmetric theory of the pure gravitational field”, Proc. Cambridge Philos. Soc., 54, 72–80, (1958). [DOI]. (Cited on pages 58, 101, 154, 155, and 156.) Sciama, D. W., “Les bases physiques de la théorie du champ unifié”, Ann. Inst. Henri Poincare, 17, 1–11, (1961). (Cited on page 156.) Sciama, D. W., “On the Interpretation of the Einstein-Schrödinger Unified Field Theory”, J. Math. Phys., 2, 472–477, (1961). [DOI]. (Cited on pages 156 and 190.) Sciama, D. W., “On the analogy between charge and spin in general relativity”, in Recent Developments in General Relativity: Dedicated to Leopold Infeld in Connection with his 60th Birthday, pp. 415–439, (Pergamon Press / PWN, New York; Warszawa, 1962). (Cited on page 156.) Sciama, D. W., “The Physical Structure of General Relativity”, Rev. Mod. Phys., 36, 463–469, (1964). [DOI]. (Cited on page 156.) Seelig, C., Albert Einstein: Leben und Werk eines Genies unserer Zeit, (Europa Verlag, Zürich, 1960). (Cited on pages 57 and 91.) Sen, D. K., Sur une nouvelle théorie unitaire et un modèle statique cosmologique de l’univers basée sur la géométrie de Lyra, Ph.D. thesis, (Faculté des Sciences de Paris, Paris, 1958). (Cited on page 175.) Sen, D. K., Fields and/or Particles, (Academic Press, London; New York, 1968). (Cited on pages 10 and 175.) Sen, D. K. and Dunn, K. A., “A scalar-tensor theory of gravitation in a modified Riemannian manifold”, J. Math. Phys., 12, 578–586, (1971). [DOI]. (Cited on page 175.) Sen, D. K. and Vanstone, J. R., “On Weyl and Lyra Manifolds”, J. Math. Phys., 13, 990–993, (1972). [DOI]. (Cited on page 175.) Shankland, R. S., McCuskey, S. W., Leone, F. C. and Kuerti, G., “New Analysis of the Interferometer Observations of Dayton C. Miller”, Rev. Mod. Phys., 27, 167–178, (1955). [DOI], [ADS]. (Cited on page 147.) Sibata, T., “A first approximate solution of the Morinaga’s equation: \({{\sqrt \Delta} \over 2}{\varepsilon _{stpq}}{K_{\ddot lm}}^{pq} = {K_{lmst}}\)”. Sci. Hiroshima Univ., Ser. A, 5, 189–203 (1935). (Cited on page 44.) Sibata, T., “Wave geometry unifying Einstein’s law of gravitation and Born’s theory of electrodynamics”, J. Sci. Hiroshima Univ., Ser. A, 8, 51–79, (1938). (Cited on page 44.) Siegmund-Schultze, R., “Scientific control in mathematical reviewing and German-U.S.-American relations between the two World Wars”, Historia Math., 21(3), 306–329 (1994). [DOI]. (Cited on page 184.) Siegmund-Schultze, R., “The Institute Henri Poincaré and mathematics in France between the wars”, Rev. Hist. Sci., 62(1), 247–283 (2009). [DOI]. (Cited on page 179.) Sievers, H., “Louis de Broglie und die Quantenmechanik”, arXiv, e-print, (1998). [arXiv:physics/9807012]. (Cited on pages 113, 166, and 197.) Soh, H. P., “A Theory of Gravitation and Electricity”, J. Math. Phys. (MIT), 12, 298–305, (1932). (Cited on page 60.) Souriau, J.-M., “Conséquences physiques d’une théorie unitaire”, C. R. Hebd. Seanc. Acad. Sci., 248, 1478–1480, (1959). [ARK]. (Cited on page 172.) Souriau, J.-M., “Five-dimensional relativity”, Nuovo Cimento, 30, 565–578, (1963). [DOI]. (Cited on page 172.) Średniawa, B., “Myron Mathisson’s and Jan Weyssenhoff’s Work on the Problem of Motion in General Relativity”, in Eisenstaedt, J. and Kox, A. J., eds., Studies in the History of General Relativity, Proceedings of the 2nd Conference on the History of General Relativity, Luminy, Marseille, France, 6–9 September 1988, Einstein Studies, 3, pp. 400–406, (Birkhäuser, Boston; Basel, 1992). [Google Books]. (Cited on page 154.) Stachel, J., “Einstein and the quantum: 50 years of struggle”, in Colodny, R. G., ed., From Quarks to Quasars: Philosophical Problems of Modern Physics, Pittsburgh Series in Philosophy and History of Science, pp. 349–385, (Pittsburgh University Press, Pittsburgh, 1986). Reprinted in Stachel (2002), pp. 367–402. (Cited on page 191.) Stachel, J., “Einstein and Quantum Mechanics”, in Einstein from ‘B’ to ‘Z’, Einstein Studies, 9, pp. 403–426, (Birkhäuser, Boston; Basel, 2002). (Cited on page 191.) Steinberger, J., “Early Particles”, Annu. Rev. Nucl. Part. Sci., 47, xiii–xlii (1997). [DOI]. (Cited on page 9.) Stephenson, G., “Affine Field Structure of Gravitation and Electromagnetism”, Nuovo Cimento, 10, 354–355, (1953). [DOI]. (Cited on page 153.) Stephenson, G., “Some Properties of Non-Symmetric Unified Field Theories”, Nuovo Cimento, 12, 279–284, (1954). [DOI]. (Cited on page 153.) Stephenson, G., “La géometrie de Finsler et les théories du champs unifié”, Ann. Inst. Henri Poincare, 15, 205–215, (1957). Online version (accessed 20 May 2014): http://www.numdam.org/item?id=AIHP_1957__15_3_205_0. (Cited on pages 175, 176, and 177.) Stephenson, G. and Kilmister, C. W., “A Unified Field Theory of Gravitation and Electromagnetism”, Nuovo Cimento, 10, 230–235, (1953). [DOI]. (Cited on page 175.) Straus, E. G., “Some Results in Einstein’s Unified Field Theory”, Rev. Mod. Phys., 21, 414–420, (1949). [DOI]. (Cited on pages 63, 74, 78, and 111.) Street, J. C. and Stevenson, E. C., “Penetrating Corpuscular Component of the Cosmic Radiation (Abstract 40)”, Phys. Rev., 51, 1005, (1937). [DOI]. in: Minutes of the Washington Meeting, April 29, 30 and May 1, 1937. (Cited on page 8.) Stueckelberg, E. C. G., “Radioactive β-Decay and Nuclear Exchange Force as a Consequence of a Unitary Field Theory”, Nature, 137, 1032, (1936). [DOI]. (Cited on page 192.) Sué, M., “Involutive systems of differential equations: Einstein’s strength versus Cartan’s degré d’arbitraire”, J. Math. Phys., 32, 392–399, (1989). (Cited on page 85.) Sué, M. and Mielke, E. W., “Strength of the Poincaré gauge field equations in first order formalism”, Phys. Lett. A, 139, 21–26, (1990). (Cited on page 85.) Surin, A., Étude du schéma fluide parfait et des équations de mouvement dans les théories pentadimensionnelles de Jordan-Thiry et de Kaluza-Klein, Memorial des Sciences Mathematiques, 159, (Gauthier-Villars, Paris, 1965). Online version (accessed 13 February 2014): http://www.numdam.org/item?id=MSM_1965__159__1_0. Thèse de doctorat, Paris 1963. (Cited on page 136.) Takasu, T., “Sphere-geometrical Unitary Field Theories”, Compos. Math., 10, 95–116, (1952). Online version (accessed 19 June 2014): http://www.numdam.org/item?id=CM_1952__10__95_0. (Cited on pages 7 and 160.) Takasu, T., “A combined field theory as a three-dimensional non-holonomic parabolic Lie geometry and its quantum mechanics”, Yokohama Math. J., 1, 105–116, (1953). (Cited on page 160.) Takeno, H., “On some spherical wave solutions of non-symmetric unified field theories”, Tensor, New Ser., 6, 90–103, (1956). (Cited on page 59.) Takeno, H., “Some plane wave-like solutions of non-symmetric unified field theory”, Tensor, New Ser., 11, 263–269, (1961). (Cited on page 100.) Takeno, H., Ikeda, M. and Abe, S., “On solutions of new field equations of Einstein and those of Schrödinger”, Prog. Theor. Phys., 6, 837–848, (1951). [DOI]. (Cited on pages 74, 112, and 184.) Thirring, W. E., “An Alternative Approach to the Theory of Gravitation”, Ann. Phys. (N.Y.), 16, 96–117, (1961). [DOI]. (Cited on page 166.) Thiry, Y., “Les équations de la théorie unitaire de Kaluza”, C. R. Hebd. Seanc. Acad. Sci., 226, 216–218, (1948). [ARK]. (Cited on pages 30 and 133.) Thiry, Y., “Sur la régularité des champs gravitationels et électromagnétiques dans les théories unitaires”, C. R. Hebd. Seanc. Acad. Sci., 226, 1881–1882, (1948). [ARK]. (Cited on page 133.) Thiry, Y., “Etude mathématique des équations d’une théorie unitaire à quinze variables de champ”, J. Math. Pures Appl., 30, 275–396, (1951). (Cited on pages 133, 134, 135, and 190.) Thomas, J. M., “On various geometries giving a unified electric and gravitational theory”, Proc. Natl. Acad. Sci. USA, 12, 187–191, (1926). [DOI]. (Cited on page 18.) Thomas, T. Y., “On the projective and equi-projective geometry of paths”, Proc. Natl. Acad. Sci. USA, 11, 199–203, (1925). (Cited on page 16.) Todeschini, B., “Sul potenziale elettromagnetico nella teoria unitaria di Einstein”, Rend. Lincei, Ser. VIII, 14, 495–500, (1953). (Cited on pages 15 and 161.) Tonnelat, M.-A., “Densité-flux et densité d’énergie dans la théorie du corpuscule de spin 2”, C. R. Hebd. Seanc. Acad. Sci., 212, 384–389, (1941). [ARK]. (Cited on page 104.) Tonnelat, M.-A., “La seconde quantification dans la théorie du corpuscule de spin 2”, C. R. Hebd. Seanc. Acad. Sci., 212, 430–434, (1941). [ARK]. (Cited on page 104.) Tonnelat, M.-A., “Sur la fusion de deux particules de spin 1”, C. R. Hebd. Seanc. Acad. Sci., 212, 187–189, (1941). [ARK]. (Cited on page 104.) Tonnelat, M.-A., “Sur la théorie du photon dans un espace de Riemann”, Ann. Phys. (Paris), 15, 144, (1941). (Cited on page 104.) Tonnelat, M.-A., “Sur les ondes planes de la particule de spin 2 (graviton)”, C. R. Hebd. Seanc. Acad. Sci., 212, 263–266, (1941). [ARK]. (Cited on page 104.) Tonnelat, M.-A., “Sur une interprétation possible des grandeurs issues d’un tenseur symétrique dans la théorie de la particule de spin 2”, C. R. Hebd. Seanc. Acad. Sci., 212, 687–689, (1941). [ARK]. (Cited on pages 104 and 108.) Tonnelat, M.-A., “Une nouvelle forme de théorie unitaire. Étude de la particule de spin 2”, Ann. Phys. (Paris), 17, 158–207, (1942). also published by Masson, Paris 1942. (Cited on pages 104 and 166.) Tonnelat, M.-A., “Les phénomènes de gravitation, Étude des interactions entre la matière et la particule de spin 2”, Ann. Phys. (Paris), 19, 396–445, (1944). 11e série. (Cited on pages 104 and 166.) Tonnelat, M.-A., “Structure générale d’une théorie unitaire des champs gravifique, électromagnétique et mésonique”, C. R. Hebd. Seanc. Acad. Sci., 222, 1162–1164, (1946). [ARK]. (Cited on page 105.) Tonnelat, M.-A., “Théorie unitaire du champ physique. 1. Les tenseurs fondamentaux et la connexion affine”, C. R. Hebd. Seanc. Acad. Sci., 228, 368–370, (1949). [ARK]. (Cited on page 106.) Tonnelat, M.-A., “Théorie unitaire du champ physique. 2. Cas d’une métrique symétrique”, C. R. Hebd. Seanc. Acad. Sci., 228, 660–662, (1949). [ARK]. (Cited on page 106.) Tonnelat, M.-A., “Théorie unitaire du champ physique. 3. Détermination des tenseurs fondamentaux”, C. R. Hebd. Seanc. Acad. Sci., 228, 1846–1848, (1949). [ARK]. (Cited on page 106.) Tonnelat, M.-A., “Résolution des équations fondamentales d’une théorie unitaire purement affine”, C. R. Hebd. Seanc. Acad. Sci., 230, 182–184, (1950). [ARK]. (Cited on pages 90, 107, and 111.) Tonnelat, M.-A., “Théorie unitaire affine. 2. Résolution rigoureuse de l’équation fondamentale”, C. R. Hebd. Seanc. Acad. Sci., 231, 487–489, (1950). [ARK]. (Cited on pages 90 and 111.) Tonnelat, M.-A., “Compatibilité des équations de la théorie unitaire des champs”, C. R. Hebd. Seanc. Acad. Sci., 232, 2407–2409, (1951). [ARK]. (Cited on page 112.) Tonnelat, M.-A., “Étude du système formé par la réunion de deux corpuscules de Dirac”, J. Phys. Radium, 12, 516–520, (1951). [DOI]. (Cited on page 105.) Tonnelat, M.-A., “Les tentatives de rapprochement entre les constantes λ (constante cosmologique) et μ0 (masse du photon)”, J. Phys. Radium, 12, 829–832, (1951). [DOI]. (Cited on page 108.) Tonnelat, M.-A., “Théorie unitaire affine du champ physique”, J. Phys. Radium, 12, 81–88, (1951). [DOI]. (Cited on pages 20, 72, 107, 108, 109, and 190.) Tonnelat, M.-A., “Compléments à la théorie unitaire des champs”, J. Phys. Radium, 13, 177–185, (1952). (Cited on pages 107 and 108.) Tonnelat, M.-A., “Application de la solution générale des equations \({g_{\underset + \mu \underset - \nu; \rho}} = 0\) à la détermination d’une connexion affine particulière”, C. R. Hebd. Seanc. Acad. Sci., 239, 231–233, (1954). [ARK]. (Cited on pages 90 and 98.) Tonnelat, M.-A., “Validité de la solution générale des equations d’Einstein \({g_{\underset + \mu \underset - \nu; \rho}} = 0\) dans le cas φ = 0”, C. R. Hebd. Seanc. Acad. Sci., 239, 1468–1470, (1954). [ARK]. (Cited on pages 90 and 112.) Tonnelat, M.-A., “La solution générale des équations d’Einstein”, J. Phys. Radium, 16, 21–38, (1955). (Cited on pages 112 and 113.) Tonnelat, M.-A., La théorie du champ unifié d’Einstein et quelques-uns de ses développements, (Gauthier-Villars, Paris, 1955). (Cited on pages 10, 12, 13, 15, 17, 23, 72, 98, 101, 102, 109, 110, 111, 115, 121, 124, and 185.) Tonnelat, M.-A., “La solution générale des équations d’Einstein \({g_{\underset + \mu \underset - \nu; \rho}} = 0\)”, in Mercier, A. and Kervaire, M., eds., Fünfzig Jahre Relativitätstheorie — Cinquantenaire de la Théorie de la Relativité — Jubilee of Relativity Theory, Proceedings of the conference held in Bern, Switzerland, 11–16 July 1955, Helv. Phys. Acta Suppl., 29, pp. 192–197, (Birkhäuser, Basel, 1956). [DOI]. (Cited on page 112.) Tonnelat, M.-A., “Les équations approchées de la théorie du champ unifié d’Einstein-Schrödinger”, Nuovo Cimento, 3, 902–920, (1956). [DOI]. (Cited on pages 113 and 150.) Tonnelat, M.-A., “Représentation de la matière en relativité générale et en théorie unitaire”, Cah. Phys., 13, 1–11, (1958). (Cited on pages 115, 116, and 193.) Tonnelat, M.-A., “Solution générale des équations gμν;ρ = 0. Expression de la connexion affine en fonction du tenseur fondamental gμν non dissocié”, C. R. Hebd. Seanc. Acad. Sci., 246, 2227–2230, (1958). [ARK]. (Cited on pages 101 and 113.) Tonnelat, M.-A., “Sur la représentation des contributions matérielles et électromagnétiques dans une théorie purement géométrique”, C. R. Hebd. Seanc. Acad. Sci., 251, 2892–2894, (1960). [ARK]. (Cited on pages 101, 116, and 119.) Tonnelat, M.-A., “Théorie euclidienne du champ de gravitation. Énergie gravitationelle”, C. R. Hebd. Seanc. Acad. Sci., 253, 2475–2477, (1961). [ARK]. (Cited on page 166.) Tonnelat, M.-A., “Inductions de gravitation”, C. R. Hebd. Seanc. Acad. Sci., 254, 225–227, (1962). [ARK]. (Cited on page 168.) Tonnelat, M.-A., “Énergie gravitationelle et lois du mouvement dans une théorie linéaire et Minkowskienne du champ de gravitation”, in Infeld, L., ed., Proceedings on Theory of Gravitation, conference in Warszawa and Jabłonna, 25–31 July, 1962, pp. 323–327, (Gauthier-Villars, Paris, 1964). (Cited on page 167.) Tonnelat, M.-A., Les théories unitaires de l’électromagnétisme et de la gravitation, Traite de physique théorique et de physique mathématique, 11, (Gauthier-Villars, Paris, 1965). (Cited on pages 10, 17, 101, 110, 115, 116, 119, 120, 129, 166, 170, 172, 174, 185, 187, and 190.) Tonnelat, M.-A., Einstein’s theory of unified fields, (Gordon and Breach, New York, London, Paris, 1966). With a preface by André Lichnerowicz. (Cited on pages 10, 109, and 111.) Tonnelat, M.-A., “Gravitational radiation and motion of a finite mass in an external field”, in Treder, H.-J., ed., Entstehung, Entwicklung und Perspektiven der Einsteinschen Gravitationstheorie, Einstein Symposium Berlin, 2–5 November 1965, pp. 137–158, (Akademie-Verlag, Berlin, 1966). (Cited on page 169.) Tonnelat, M.-A., “Radiation gravitationelle et Mouvement des Sources”, in Lichnerowicz, A. and Tonnelat, M.-A., eds., Fluides et champ gravitationnel en relativité générale, Paris, Collège de France, 19–23 Juin 1967, Colloques Internationaux du CNRS, 170, pp. 73–102, (Éditions du CNRS, Paris, 1969). (Cited on pages 166 and 169.) Tonnelat, M.-A., Histoire du principe de relativité, (Flammarion, Paris, 1971). (Cited on pages 10, 104, and 121.) Tonnelat, M.-A. and Bouche, L., “Quelques remarques le sur le schéma matière pure dans une théorie asymétrique du champ de gravitation pure”, C. R. Hebd. Seanc. Acad. Sci., 250, 4289–4291, (1960). [ARK]. (Cited on page 155.) Tonnelat, M.-A. and Lederer, S., “Définition de l’impulsion-énergie gravitationelle dans une théorie euclidienne du champ de gravitation”, C. R. Hebd. Seanc. Acad. Sci., 256, 371–373, (1963). [ARK]. (Cited on page 168.) Tonooka, K., “On three- and four-dimensional Finsler spaces with fundamental form \(\root 3 \of {{a_{\alpha \beta \gamma}}{{\chi \prime}^\alpha}{{\chi \prime}^\beta}{{\chi \prime}^\gamma}}\)”, Tensor, New Ser., 9, 209–216, (1959). (Cited on page 175.) Treder, H.-J., “Der Materietensor in der unsymmetrischen Feldtheorie Einsteins”, Wiss. Z. Humboldt-Univ. Berlin, Math.-Naturw. R., 4(1), 9–10 (1955). (Cited on pages 116 and 118.) Treder, H.-J., “Stromladungsdefinition und elektrische Kraft in der einheitlichen Feldtheorie”, Ann. Phys. (Leipzig), 19, 369–380, (1957). [DOI]. (Cited on pages 101 and 117.) Treder, H.-J., “Über eine Interpretation von Einsteins hermite-symmetrischer Feldtheorie”, Tensor, New Ser., 23, 75–80, (1972). (Cited on page 102.) Udeschini, P., “Le equazioni di prima approssimazione nella nuova teoria relativistica unitaria di Einstein”, Rend. Lincei, 9, 256–261, (1950). (Cited on page 162.) Udeschini, P., “Le equazioni di seconda approssimazione nella nuova teoria relativistica unitaria di Einstein. I”, Rend. Lincei, Ser. VIII, 10, 21–24, (1951). (Cited on page 162.) Udeschini, P., “Le equazioni di seconda approssimazione nella nuova teoria relativistica unitaria di Einstein. II”, Rend. Lincei, Ser. VIII, 10, 121–123, (1951). (Cited on page 162.) Udeschini, P., “Sulle mutue azioni fra campo gravizionale e campo elettromagnetico”, Rend. Lincei, Ser. VIII, 10, 390–394, (1951). (Cited on page 162.) Udeschini, P., “Spostamento delle righe spettrali per effeto di un campo magnetico elementare nella nuova teoria relativistica unitaria di Einstein”, in Atti del Quarto congresso dell’Unione Matematica Italiana, Proceedings of the congress held in Taormina, 25–31 October 1951, pp. 583–584, (Edizioni Cremonese, Roma, 1952). (Cited on page 163.) Udeschini, P., “Successiva linearizzazione delle ultime equazioni del campo unitario einsteiniano”, Rend. Lincei, Ser. VIII, 15(3–4), 165–170 (1953). (Cited on page 162.) Udeschini, P., “Sviluppi dell’ultima teoria unitaria di Einstein”, Rend. Sem. Mat. Fis. Milano, 27, 50–74, (1956). [DOI]. (Cited on page 162.) Udeschini, P., “Sopra una costante universale nella teoria unitaria di Einstein”, Rend. Ist. Lombardo Accad. Sci. Lett., Sci. Mat. Fis. Chim. Geol., Ser. A, 97, 68–80, (1963). (Cited on page 163.) Udeschini, P., “On Einstein’s Unified Field Theory”, in Hoffman, B., ed., Perspectives in Geometry and Relativity: Essays in honor of Václav Hlavatý, pp. 436–447, (Indiana University Press, Bloomington; London, 1966). (Cited on page 163.) Utiyama, R., “Invariant theoretical interpretation of interactions”, Phys. Rev., 101, 1597–1607, (1956). [DOI]. (Cited on page 156.) Utiyama, R. et al., “Report on ‘Symposium on Gravity’ Held at Research Institute for Fundamental Physics in April, 1962”, Prog. Theor. Phys. Suppl., 25, 99–107, (1963). [DOI]. (Cited on pages 186 and 195.) Vaillant, J., “Sur les discontinuités du tenseur de courbure en théorie d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 253, 231–233, (1961). [ARK]. (Cited on page 129.) Vaillant, J., “Sur les discontinuités du tenseur de courbure en théorie d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 253, 1909–1911, (1961). [ARK]. (Cited on page 129.) Vaillant, J., “Sur les discontinuités du tenseur de courbure en théorie d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 254, 431–433, (1962). [ARK]. (Cited on page 130.) Vallee, R., Sur la représentations relativiste des fluides parfaits chargés, Ph.D. thesis, (Université de Paris, Paris, 1962). (Cited on page 140.) van Dongen, J., Einstein’s Unification, (Cambridge University Press, Cambridge; New York, 2010). (Cited on pages 11 and 189.) Vanstone, J. R., “The General Static Spherically Symmetric solution of the ‘Weak’ Unified Field equations”, Can. J. Math., 14, 568–576, (1962). [DOI]. (Cited on page 98.) Varga, O., “Über eine Klasse von Finslerschen Räumen, die die nichteuklidischen verallgemeinern”, Comment. Math. Helv., 19, 367–380, (1946). [DOI]. (Cited on pages 175 and 176.) Veblen, O., “Formalism for conformal geometry”, Proc. Natl. Acad. Sci. USA, 21, 168–173, (1935). [DOI]. (Cited on pages 28 and 178.) Veblen, O. and Hoffmann, B., “Projective relativity”, Phys. Rev., 36, 810–822, (1930). [DOI]. (Cited on page 27.) Venini, C., “Integrazione delle equazioni di campo di seconda approssimazione dell’ultima teoria unitaria Einsteiniana”, Rend. Ist. Lombardo Accad. Sci. Lett., Sci. Mat. Fis. Chim. Geol., Ser. A, 93, 731–742, (1959). (Cited on page 164.) Venini, C., “Massa di un corpuscolo elettrizzato nella seconda approssimazione dell’ultima teoria unitaria Einsteiniana”, Rend. Lincei, 27, 362–367, (1959). (Cited on page 164.) Venini, C., “Moto di dipoli elettrici nell’ultima teoria unitaria Einsteiniana”, Rend. Lincei, 26, 490–497, (1959). (Cited on page 164.) Venini, C., “Spostamento del perielio nell’orbita descritta da una particelle materiale elettrizzata nella prima approssimazione dell’ultima teoria unitaria einsteiniana”, Rend. Lincei, 30, 728–733, (1961). (Cited on page 164.) Vierhaus, R. and vom Brocke, B., eds., Forschung im Spannungsfeld von Politik und Gesellschaft: Geschichte und Struktur der Kaiser-Wilhelm-/Max-Planck-Gesellschaft, (Deutsche Verlagsanstalt, Stuttgart, 1990). (Cited on page 179.) Vizgin, V. P., “Einstein, Hilbert, Weyl: Genesis des Programms der einheitlichen geometrischen Feldtheorien”, NTM, 21, 23–33, (1984). (Cited on page 8.) Vizgin, V. P., Unified field theories in the first third of the 20th century, Science Networks. Historical Studies, 13, (Birkhäuser, Basel; Boston, 1994). [Google Books]. (Cited on page 10.) von Borzeszkowski, H.-H., Treder, H.-J. and Wahsner, R., Unitary field theory and prospects of generalized general relativity, MPIWG Preprint, 267, (Max Planck Institute for the History of Science, Berlin, 2004). (Cited on page 10.) von Weizsäcker, C. F., “Sur le problème d’une théorie unitaire des champs”, in Louis de Broglie: physicien et penseur, pp. 135–143, (Éditions Albin Michel, Paris, 1953). (Cited on page 96.) Vrănceanu, G., “Sur une théorie unitaire non-holonome des champs”, J. Phys. Radium, 7, 514–526, (1936). [DOI]. (Cited on page 34.) Vrănceanu, G., “Anhang”, in Vorlesungen über Differentialgeometrie, Vol. 2, pp. 382–385, (Akademie Verlag, Berlin, 1961). In deutscher Sprache bearb. und hrsg. von M. Pinl. (Cited on page 17.) Wald, R. M., General Relativity, (University of Chicago Press, Chicago, 1984). [ADS], [Google Books]. (Cited on page 14.) Wald, R. M., “Spin-two fields and general covariance”, Phys. Rev. D, 33, 3613–3625, (1986). [DOI], [ADS]. (Cited on page 168.) Weinberg, S., Dreams of a Final Theory, (Pantheon Books, New York, 1992). (Cited on page 196.) Weinberg, S., “The Making of the Standard Model”, in ’t Hooft, G., ed., 50 Years of Yang-Mills Theory, pp. 99–117, (World Scientific, Singapore; Hackensack, NJ, 2005). [DOI]. (Cited on page 9.) Wentzel, G., “Zur Frage der Äquivalenz von Lichtquanten und Korpuskelpaaren”, Z. Phys., 92, 337–358, (1934). [DOI]. (Cited on page 8.) Weyl, H., “Gravitation und Elektrizität”, Sitzungsber. Preuss. Akad. Wiss., 1918(XXVI), 465–478 (1918). with “Nachtrag” of Einstein on p. 478 and “Erwiderung des Verfassers” on pp. 478–480 (1918). (Cited on page 9.) Weyl, H., Raum, Zeit, Materie, (Springer, Berlin, 1921), 4th edition. (Cited on page 53.) Weyl, H., “Zur Infinitesimalgeometrie: Einordnung der projektiven und konformen Auffassung”, Nachr. Koenigl. Gesellsch. Wiss. Goettingen, Math.-Phys. Kl., 1921, 99–112, (1921). (Cited on page 16.) Weyl, H., Mathematische Analyse des Raumproblems, (Springer, Berlin, 1923). (Cited on page 16.) Weyl, H., “Elektron und Gravitation. I.”, Z. Phys., 56, 330–352, (1929). [DOI]. (Cited on pages 9 and 155.) Weyl, H., “Relativity Theory as a Stimulus in Mathematical Research”, in Eisenhart, L. P., ed., Theory of Relativity in Contemporary Science, Papers read at the Celebration of the Seventieth Birthday of Professor Albert Einstein in Princeton, March 19, 1949, Proc. Amer. Phil. Soc., 93, pp. 535–541, (American Philosophical Society, Philadelphia, 1949). [Google Books]. (Cited on page 78.) Weyssenhoff, J., “Further contributions to the dynamics of spin-fluids and spin-particles”, Acta Phys. Pol., 9, 26–33, (1947). (Cited on page 154.) Weyssenhoff, J. and Raabe, A., “Relativistic dynamics of spin-fluids and spin-particles”, Acta Phys. Pol., 9, 7–18, (1947). (Cited on page 154.) Wheeler, J. A., “Geons”, Phys. Rev., 97, 511–536, (1955). [DOI]. (Cited on page 193.) Wheeler, J. A., “Wie steht es heute mit Einsteins Idee, alles als Geometrie zu verstehen?”, in Treder, H.-J., ed., Entstehung, Entwicklung und Perspektiven der Einsteinschen Gravitationstheorie, Einstein-Symposium Berlin, 2–5 November 1965, pp. 14–25, (Akademie-Verlag, Berlin, 1966). (Cited on page 186.) Will, C. M., Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge; New York, 1981), 2nd edition. (Cited on page 137.) Will, C. M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 9, lrr-2006-3 (2006). [DOI], [ADS], [arXiv:gr-qc/0510072]. URL (accessed 11 February 2014): http://www.livingreviews.org/lrr-2006-3. (Cited on page 137.) Winogradzki, J., “Sur la connexion des espaces affines”, C. R. Hebd. Seanc. Acad. Sci., 232, 936–938, (1951). [ARK]. (Cited on page 122.) Winogradzki, J., “Contribution à la théorie des grandeurs physiques attachées aux particules de spin 1/2”, Ann. Phys. (Paris), 8, 763–812, (1953). (Cited on page 122.) Winogradzki, J., “Sur les λ-transformations de la théorie unitaire d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 239, 1359–1361, (1954). [ARK]. (Cited on pages 20 and 122.) Winogradzki, J., “Le Groupe Relativiste de la Théorie Unitaire d’Einstein-Schrödinger”, J. Phys. Radium, 16, 438–443, (1955). [DOI]. (Cited on pages 22, 24, 102, and 122.) Winogradzki, J., “Sur les ‘identités de Bianchi’ de la théorie unitaire d’Einstein-Schrödinger”, C. R. Hebd. Seanc. Acad. Sci., 242, 74–76, (1956). [ARK]. (Cited on pages 88, 102, and 122.) Winogradzki, J., “Bookreport on ‘M.-A. Tonnelat, La théorie du champ unifié d’Einstein et quelquesuns de ses développements’, Paris 1955”, J. Phys. Radium, 18, 523, (1957). (Cited on page 110.) Winogradzki, J., “Invariance et conservation en théorie des champs. Application de la théorie générale à l’étude d’un champ spinoriel”, Cah. Phys., 13, 17–26, (1958). (Cited on page 122.) Woit, P., Not Even Wrong: The Failure of String Theory and the Continuing Challenge to Unify the Laws of Physics, (Vintage Press, London, 2007). (Cited on page 86.) Wrede, R. C., “‘n’ dimensional considerations of basic principles A and B of the unified theory of relativity”, Tensor, New Ser., 8, 95–122, (1958). (Cited on page 147.) Wyman, M., “Unified Field Theory”, Can. J. Math., 2, 427–439, (1950). [DOI]. (Cited on pages 97 and 100.) Wyman, M. and Zassenhaus, H., “Zero Curvature Tensor in Einstein’s Unified Field Theory”, Phys. Rev., 110, 228–236, (1958). [DOI]. (Cited on page 99.) Xinh, N. X., “Le tenseur d’impulsion-énergie électromagnétique en présence de matière chargée, dans le cas des équations de liaison non linéaires de la théorie de Born-Infeld”, C. R. Hebd. Seanc. Acad. Sci., 250, 468–470, (1960). [ARK]. (Cited on page 45.) Yang, C. N. and Mills, R. L., “Conservation of isotopic spin and isotopic gauge invariance”, Phys. Rev., 96, 191–195, (1954). [DOI]. (Cited on pages 9 and 156.) Yano, K., “Sur la nouvelle théorie unitaire de MM. Einstein et Bergmann”, Proc. Imp. Acad. Japan, 14, 325–328, (1938). [DOI]. (Cited on page 34.) Yano, K. and Ohgane, M., “On Unified Field Theories”, Ann. Math. (2), 55, 318–327, (1952). [DOI]. (Cited on page 34.) Yano, K. and Ohgane, M., “On six-dimensional unified field theories”, Rend. Mat. Appl. (5), 13, 99–132, (1955). (Cited on page 139.) Yukawa, H., “On the Theory of Elementary Particles. I”, Prog. Theor. Phys., 2(4), 209–215 (1947). [DOI]. (Cited on page 39.) Yukawa, H., “Models and Methods in the Meson Theory”, Rev. Mod. Phys., 21, 474–479, (1949). [DOI]. (Cited on page 39.) Yukawa, H., “On the Radius of the Elementary Particle”, Phys. Rev., 76, 300–301, (1949). [DOI]. (Cited on page 39.) Yukawa, H., “Quantum Theory of Non-Local Fields. Part I. Free Fields”, Phys. Rev., 77, 219–226, (1950). [DOI]. (Cited on page 39.) Yukawa, H., “Structure and Mass Spectrum of Elementary Particles. I. General Considerations”, Phys. Rev., 91, 415–416, (1953). [DOI]. (Cited on page 39.) Yukawa, H., “Structure and Mass Spectrum of Elementary Particles. II. Oscillator Model”, Phys. Rev., 91, 416–417, (1953). [DOI]. (Cited on page 39.) Yukawa, H., “An attempt at a unified theory of elementary particles”, in Imai, I., ed., Proceedings of the International Conference of Theoretical Physics 1953, Kyoto and Tokyo, September 1953, pp. 1–10, (Science Council of Japan, Tokyo, 1954). (Cited on page 39.) Zanella, A., “Successive linearizzazioni in una recente teoria relativistica unitaria”, Rend. Ist. Lombardo Sci. Lett., Cl. Sci. Mat. Natur., III. Ser., 87, 575–592, (1954). (Cited on page 163.)