On the Hermite–Hadamard type inequality for ψ-Riemann–Liouville fractional integrals via convex functions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Avci, M., Kavurmaci, H., Ödemir, M.E.: New inequalities of Hermite–Hadamard type via s-convex functions in the second sense with applications. Appl. Math. Comput. 217, 5171–5176 (2011)
Bessenyei, M.: The Hermite–Hadamard inequality in Beckenbach’s setting. J. Math. Anal. Appl. 364, 366–383 (2010)
Cal, J., Carcamob, J., Escauriaza, L.: A general multidimensional Hermite–Hadamard type inequality. J. Math. Anal. Appl. 356, 659–663 (2009)
Dragomir, S.S., Fitzpatrick, S.: The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 32, 687–696 (1999)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)
Set, E.: New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 63, 1147–1154 (2012)
Sousa, J.V.C., Oliveira, E.C.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)
Wang, J., Li, X., Fečkan, M., Zhou, Y.: Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity. Appl. Anal. 92, 2241–2253 (2013)