On the Generic Structure and Stability of Stackelberg Equilibria
Tóm tắt
We consider a noncooperative Stackelberg game, where the two players choose their strategies within domains
$$X\subseteq {{\mathbb {R}}}^m$$
and
$$Y\subseteq {{\mathbb {R}}}^n$$
. Assuming that the cost functions F, G for the two players are sufficiently smooth, we study the structure of the best reply map for the follower and the optimal strategy for the leader. Two main cases are considered: either
$$X=Y=[0,1]$$
, or
$$X={{\mathbb {R}}}, Y={{\mathbb {R}}}^n$$
with
$$n\ge 1$$
. Using techniques from differential geometry, including a multi-jet version of Thom’s transversality theorem, we prove that, for an open dense set of cost functions
$$F\in {{\mathcal {C}}}^2$$
and
$$G\in {{\mathcal {C}}}^3$$
, the Stackelberg equilibrium is unique and is stable w.r.t. small perturbations of the two cost functions.
Tài liệu tham khảo
von Stackelberg, H.: The Theory of the Market Economy. Oxford University Press, Oxford (1952)
Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)
Leitmann, G.: On generalized Stackelberg strategies. J. Optim. Theory Appl. 26, 637–643 (1978)
Breton, M., Alj, A., Haurie, A.: Sequential Stackelberg equilibrium in two-person games. J. Optim. Theory Appl. 59, 71–97 (1988)
Bressan, A.: Noncooperative differential games. Milan J. Math. 79, 357–427 (2011)
Lignola, M.B., Morgan, J.: Topological existence and stability for Stackelberg problems. J. Optim. Theory Appl. 84, 145–169 (1995)
Marhfour, A.: Mixed solutions for weak Stackelberg problems: existence and stability results. J. Optim. Theory Appl. 105, 417–440 (2000)
Simaan, M., Cruz, J.: On the Stackelberg strategies in nonzero-sum games. J. Optim. Theory Appl. 11, 533–555 (1973)
Dontchev, A.L., Zolezzi, T.: Well-Posed Optimization Problems. Springer, Berlin (1993)
Mallozzi, L., Morgan, J.: Weak Stackelberg problem and mixed solutions under data perturbations. Optimization 32, 269–290 (1995)
Bloom, J.M.: The Local Structure of Smooth Maps of Manifolds. B.A. Thesis, Harvard U (2004)
Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Springer, New York (1973)
Conzález-Alcón, C., Borm, P., Hendrickx, R., et al.: A taxonomy of best-reply multifunctions in \(2\times 2\times 2\) trimatrix games. TOP 15(2), 297–306 (2007)
Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)
Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1969)
Arnold, V.: Catastrophe Theory, 3rd edn. Springer, Berlin (1992)
Bressan, A., Jiang, Y.: Self-consistent feedback Stackelberg solutions for infinite horizon stochastic games. Dynam. Games Appl. (2019, submitted)
Sard, A.: The measure of critical values of differentiable maps. Bull. Am. Math. Soc. 48, 883–890 (1942)