On the E.S. Pyatnitskii principle of decomposition

Automation and Remote Control - Tập 68 - Trang 1492-1501 - 2007
Yu. N. Pavlovskii1
1Dorodnitsyn Computer Center, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

The main notions and facts of the geometrical decomposition theory were characterized in brief. The E.S. Pyatnitskii principle of decomposition was treated as the solution of the problem of assignment of feedback controls so that the controlled system admits a decomposition suitable for realization of the control objectives. It was hypothesized that this method of control is advisable if the complexity of the controlled system exceeds a certain limit.

Tài liệu tham khảo

Pyatnitskii, E.S., Principle of Decomposition in the Control of Mechanical Systems, in Sintez sistem upravleniya manipulyatsionnymi robotami na printsipe dekompozitsii (Decompositional Design of the Control Systems of Manipulation Robots), Moscow: Inst. Probl. Upravlen., 1987, pp. 4–15. Pyatnitskii, E.S., Principle of Decomposition in the Control of Mechanical Systems, Dokl. Akad. Nauk SSSR, 1988, vol. 300, no. 2, pp. 300–303. Pyatnitskii, E.S., Design of the Control Systems of Manipulation Robots based on the Principle of Decomposition, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1987, no. 3, pp. 311–324. Matyukhin, V.I., Universal’nye zakony upravleniya mekhanicheskimi sistemami (Universal Control Laws for Mechanical Systems), Moscow: MAKS Press, 2001. Pavlovskii, Yu.N. and Smirnova, T.G., Problema dekompozitsii v matematicheskom modelirovanii (Problem of Control in Mathematical Modeling), Moscow: Fazis, 1998. Pavlovskii, Yu.N. and Smirnova, T.G., Shkaly rodov struktur, termy i sootnosheniya, sokhranyayushchiesya pri izomorfizmakh (Scales of Structure Kinds, Terms, and Relations Retained under Isomorphisms), Moscow: Vychisl. Tsentr Ross. Akad. Nauk, 2003. Pavlovskii, Yu.N. and Smirnova, T.G., Vvedenie v geometricheskuyu teoriyu dekompozitsii (Introduction to the Geometrical Theory of Decomposition), Moscow: Fazis, 2006. Elkin, V.I. and Pavlovsky, J.N., Decomposition of Models of Control Processes, J. Math. Sci., 1998, vol. 88, no. 5, pp. 723–761. Bourbaki, N., Eléménts de mathematique, Première partie. Les structures fondamentales de l’analyse. Livre 1, Théorie des ensembles, Paris: Hermann, 1960. Translated under the title Teoriya mnozhestv, Moscow: Mir, 1965. Ovsyannikov, L.V., Gruppovoi analiz differentsial’nykh uravnenii (Group Analysis of Differential Equations), Moscow: Nauka, 1978. Yakovenko, G.N., Gruppovye svoistva dinamicheskikh sistem (Group Properties of the Dynamic Systems), Moscow: MFTI, 1994. Shchipanov, G.V., Theory and Methods of Design of the Automatic Regulators, Avtom. Telemekh., 1939, no. 1, pp. 49–66. Ishlinskii, A.Yu., Opening Address, in Tr. I Vsesoyuz. sov. teor. invariantnosti (Proc. I All-Union Conf. Invar. Theor.), Kiev: Akad. Nauk SSSR, 1959, pp. 5–9. Petrov, B.N., Principle of Invariance and the Conditions for Its Application to Calculations of the Linear and Nonlinear Systems, in Tr. I Mezhdunar. kongressa po avtomat. upravleniyu (Proc. I Int. IFAC Congr.), Moscow: Nauka, 1961. Kukhtenko, A.I., Problema invariantnosti v avtomatike (Problem of Invariance in Automation), Kiev: Gostekhizdat, 1963. Rozonoer, L.I., Variational Approach to the Problem of Invariance of the Automatic Control Systems, Avtom. Telemekh., 1963, no. 6, pp. 744–756. Velichenko, V.V., On the Variational Method in the Problem of Invariance of the Controlled Systems, Avtom. Telemekh., 1972, no. 4, pp. 22–35. Elkin, V.I., Realization, Invariance, and Self-sufficiency of the Nonlinear Controllable Dynamic Systems, Avtom. Telemekh., 1981, no. 7, pp. 36–44. Elkin, V.I., Reduktsiya nelineinykh upravlyaemykh sistem. Differentsial’no-geometricheskii podkhod (Reduction of Nonlinear Controllable Systems. Differential-Geometrical Approach), Moscow: Nauka, 1997. Elkin, V.I., Reduktsiya nelineinykh upravlyaemykh sistem. Dekompozitsiya i invariantnost’ po vozmushcheniyam (Reduction of Nonlinear Controllable Systems. Decomposition and Perturbation Invariance), Moscow: Fazis, 2003. Chernous’ko, F.L, Anan’evskii, I.M., and Reshmin, S.A., Metody upravleniya nelineinymi mekhanicheskimi sistemami (Methods of Control of the Nonlinear Mechanical Systems), Moscow: Fizmatlit, 2006.