On the Distribution of Leja-Górski Points
Tóm tắt
Based on the concept of Leja-Górski points, discrete approximations to the equilibrium distribution of a smooth surface or a quasiconformal curve or arc are constructed. Estimates for the order of approximation in terms of discrepancy are given and numerical computations are performed in the case of the unit sphere.
Từ khóa
Tài liệu tham khảo
V. V. Andrievskii and H.-P. Blatt, Erdős–Turán-type theorems on piecewise smoothcurves and arcs, J. Approx. Theory 88, 109–134 (1997).
V. V. Andrievskii and H.-P. Blatt, Adiscrepancy theorem on quasiconformal curves, Constr. Approx. 13, 363–379 (1997).
J. Baglama, D. Calvetti, and L. Reichel, Fast Leja points, Electr. Trans. Numerical Analy. 7, 124–140 (1998).
V. Bentkus, Dependence of the Berry–Esseen estimate on the dimension, Lit. Math. J. 26, 110–114(1986) (transl. from Litov. Mat. Sb. 26, 205–210).
R. N. Bhattacharya and R. R. Rao, NormalApproximation and Asymptotic Expansions, Wiley, New York, 1976.
A. Edrei, Sur les déterminantsrécurrents et les singularités d'une fonction donnée par son developpement de Taylor, Comp. Math. 7, 20–88 (1939).
W. Freeden, T. Gervens, and M. Schreiner, Constructive Approximation on the Sphere,Clarendon Press, Oxford, 1998.
M. Götz, Dissertation, Kath. Univ. Eichstätt, Shaker-Verlag, Aachen, 1998.
J. Górski, Les suites de points extrémaux liés aux ensembles dans l'espace à 3dimensions, Ann. Math. Polon. 4, 14–20 (1957).
J. Hüsing, Dissertation, Kath. Univ. Eichstätt,Shaker-Verlag, Aachen, 1998.
J. Hüsing, Estimates for the discrepancy of a signed measure using itsenergy norm, J. Approx. Theory, to appear.
W. Kleiner, Une condition de Dini–Lipschitz dans la théoriedu potentiel, Ann. Polon. Math. 14, 117–130 (1964).
W. Kleiner, Sur l'approximation de lareprésentation conforme par la méthode des points extrémaux de M. Leja, Ann. Polon. Math. 14, 131–140 (1964).
W. Kleiner, Degree of convergence of the extremal points method for Dirichlet's problem in thespace, Colloq. Math. 12, 41–52 (1964).
J. Korevaar and M. A. Monterie, Approximation of theequilibrium distribution by distributions of equal point charges with minimal energy, Trans. Amer. Math. Soc. 350, 2329–2348 (1998).
F. Leja, Sur certaines suites liées aux ensembles plans et leur application à lareprésentation conforme, Ann. Math. Polon. 4, 8–13 (1957).
Ch. Pommerenke, KonformeAbbildung und Fekete-Punkte, Math. Z. 89, 422–438 (1965).
E. B. Saff and A. B. J. Kuijlaars,Distributing Many Points on a Sphere, Math. Intell. 19, 5–11 (1997).
E. B. Saff and V. Totik,Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997.
P. Sjögren, Estimates ofmass distributions from their potentials and energies, Ark. Mat. 10, 59–77 (1972).
P. Sjögren,On the regularity of the distribution of the Fekete points of a compact surface in R n, Ark. Mat. 11, 147–151 (1973).
J. Steinacker, E. Thamm, and U. Maier, Efficient integration of intensity functions on the unitsphere, J. Quant. Spectrosc. Radiat. Transfer 56, 97–107 (1996).
S.-H. Teng, Low energy andmutually distant sampling, J. Algorithms 30, 52–67 (1999).
K.-O. Widman, Inequalities for theGreen Function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand. 21, 17–37 (1967).
Y. Zhou, Ph.D. thesis, University of South Florida, Tampa, 1995.