Murray C., 2007, J. Phys. Chem. A, 111, 4727, 10.1021/jp071473w
Derro E. L., 2007, J. Phys. Chem. A, 111, 11592, 10.1021/jp0760915
Chalmet S., 2006, J. Chem. Phys., 124, 194502, 10.1063/1.2198818
Chin G., 2003, Science, 302, 535
Cooper P. D., 2006, J. Phys. Chem. A, 110, 7985, 10.1021/jp062765k
Yu H.-G., 1997, J. Chem. Soc., Faraday Trans., 93, 2651, 10.1039/a700762k
Szichman H., 1999, J. Phys. Chem. A, 103, 1967, 10.1021/jp984434g
Fabian W. N. F., 2005, Theor. Chem. Acc., 114, 182, 10.1007/s00214-005-0659-7
Varandas A. J. C., 2004, J. Phys. Chem. A, 108, 758, 10.1021/jp036321p
Yang J., 2007, Phys. Chem. Chem. Phys., 9, 466, 10.1039/B612045H
Setokuchi O., 2000, J. Phys. Chem. A, 104, 3204, 10.1021/jp993573a
Cerkovnik J., 2002, J. Am. Chem. Soc., 124, 404, 10.1021/ja017320i
Le Crane J. P., 2006, Phys. Chem. Chem. Phys., 8, 2163, 10.1039/B518321A
Srinivasan N. K., 2005, J. Phys. Chem. A, 109, 7902, 10.1021/jp0581330
Wentworth P., 2001, Science, 293, 1806, 10.1126/science.1062722
Pleniscar B., 2000, Chem.—Eur. J., 6, 809, 10.1002/(SICI)1521-3765(20000303)6:5<809::AID-CHEM809>3.0.CO;2-8
Pleniscar B., 2005, Acta Chim. Slov., 52, 1
Engdahl A., 2002, Science, 295, 482, 10.1126/science.1067235
Xu X., 2002, Proc. Natl. Acad. Sci. U. S. A., 96, 15308, 10.1073/pnas.202596799
Alosio S., 1999, J. Am. Chem. Soc., 121, 8592, 10.1021/ja991001y
Kraka E., 2002, J. Am. Chem. Soc., 124, 8462, 10.1021/ja012553v
Chalmet S., 2006, ChemPhysChem, 7, 463, 10.1002/cphc.200500326
Wu A., 2003, J. Am. Chem. Soc., 125, 9395, 10.1021/ja030245m
Suma K., 2005, Science, 308, 1885, 10.1126/science.1112233
Blint R. J., 1973, J. Phys. Chem., 59, 6220, 10.1063/1.1680001
Mathisen K. B., 1984, Chem. Phys., 90, 225, 10.1016/0301-0104(84)85321-5
Dupuis M., 1986, J. Chem. Phys., 84, 2691, 10.1063/1.450342
Vincent M. A., 1995, Chem. Phys. Lett., 233, 111, 10.1016/0009-2614(94)01423-S
Speranza M., 1996, Inorg. Chem., 35, 6140, 10.1021/ic960549s
Jungkamp T. P. W., 1996, Chem. Phys. Lett., 257, 15, 10.1016/0009-2614(96)00520-9
Speranza M., 1998, J. Phys. Chem. A, 102, 7535, 10.1021/jp981786e
Cacace F., 1999, Science, 285, 81, 10.1126/science.285.5424.81
Hollebeek T., 1999, Annu. Rev. Phys. Chem., 50, 537, 10.1146/annurev.physchem.50.1.537
Nelander B., 2000, Chem. Phys. Lett., 332, 403, 10.1016/S0009-2614(00)01280-X
Yu H.-G., 2001, Chem. Phys. Lett., 334, 173, 10.1016/S0009-2614(00)01432-9
Pei K. M., 2002, Chin. J. Chem. Phys., 15, 263
Denis P. A., 2002, Chem. Phys. Lett., 365, 440, 10.1016/S0009-2614(02)01432-X
Varandas A. C. J., 2005, Chem. Phys. Chem., 3, 453, 10.1002/cphc.200400335
Janoschek R., 2006, J. Mol. Struct., 780, 80, 10.1016/j.molstruc.2005.04.050
Xu Z. F., 2007, Chem. Phys. Lett., 440, 12, 10.1016/j.cplett.2007.04.005
Mansergas A., 2007, Phys. Chem. Chem. Phys., 9, 5865, 10.1039/b711464h
Braams B. J., 2008, Phys. Chem. Chem. Phys., 10, 3150, 10.1039/b801928b
Varner M. E., 2008, Chem. Phys., 346, 53, 10.1016/j.chemphys.2008.02.001
Semes’ko D. G., 2008, Russ. J. Phys. Chem. A, 82, 1277, 10.1134/S0036024408080074
Denis P. A., 2008, Chem. Phys. Lett., 464, 150, 10.1016/j.cplett.2008.09.025
Denis P. A., 2009, J. Phys. Chem. A, 113, 499, 10.1021/jp808795e
Varner M. E., 2009, J. Phys. Chem A, 113, 11238, 10.1021/jp907262s
Grant D. J., 2009, J. Phys. Chem. A, 113, 11343, 10.1021/jp905847e
Murray C., 2009, Acc. Chem. Res., 42, 419, 10.1021/ar8001987
Derro E. L., 2008, J. Phys. Chem. A, 112, 9269, 10.1021/jp801232a
Derro E. L., 2008, J. Chem. Phys., 128, 244313, 10.1063/1.2945872
Le Picard S. D., 2010, Science, 328, 1258, 10.1126/science.1184459
Roos B. O., 1987, Adv. Chem. Phys., 69, 399
Kendall R. A., 1992, J. Chem. Phys., 96, 6796, 10.1063/1.462569
Anglada J. M., 1995, Theor. Chim. Acta, 92, 369, 10.1007/BF01114851
Schlegel H. B., 1982, J. Comput. Chem., 3, 214, 10.1002/jcc.540030212
Bofill J. M., 1994, J. Comput. Chem., 15, 1, 10.1002/jcc.540150102
Schmidt M. W., 1993, J. Comput. Chem., 14, 1347, 10.1002/jcc.540141112
Gonzalez C., 1989, J. Chem. Phys., 90, 2154, 10.1063/1.456010
Gonzalez C., 1990, J. Phys. Chem., 94, 5523, 10.1021/j100377a021
Anderson K., 1990, J. Phys. Chem., 94, 5483, 10.1021/j100377a012
Anderson K., 1992, J. Chem. Phys., 96, 1218, 10.1063/1.462209
Ghigo G., 2004, Chem. Phys. Lett., 396, 142, 10.1016/j.cplett.2004.08.032
Karlström G., 2003, Comput. Mater. Sci., 28, 222, 10.1016/S0927-0256(03)00109-5
At this point, it is worth pointing out that this upper bound value ofD0was determined for the DOOO•isotopomer.(50)Derro et al.(51)suggested that a reduced value ofD0is expected for HOOO•because the ZPVEs of HOOO•and HO•are likely to be larger than those of DOOO•and DO•, respectively. In fact, we have calculated the ZPVEs of DOOO•and DO•at the CASSCF(19,15)/aug-cc-pVTZ level of theory (see Table S2,Supporting Information). The resulting values, in conjunction with the ZPVE of O2, give a Δ(ZPVE) of −2.3 kcal/mol for the dissociation of DOOO•, which is 0.5 kcal/mol larger than the value of −2.8 kcal/mol calculated at the same level of theory for the dissociation of HOOO•. The estimatedcorrectedexperimentalD0upper bound value of HOOO•is, thus, 5.3 − 0.5 kcal/mol, namely, 4.8 kcal/mol.
It takes about 400 h of CPU time to perform a single point calculation of the energy plus energy gradients at the CASPT2(19,15)/aug-cc-pVTZ level on a 3.0 GHz Intel Xeon E5472 CPU.