On the Discrete q-Hermite Matrix Polynomials

Ahmed Salem1
1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Tóm tắt

There are two definitions for the discrete q-Hermite polynomials, one of them is defined for $$01$$ . This paper is devoted to extend these definitions to the discrete q-Hermite matrix polynomials by means of the generating matrix functions. Explicit expressions and Rodrigues-type formulas for the discrete q-Hermite matrix polynomials are obtained. Some recurrence relations for these matrix polynomials, in particular the three terms recurrence relations are given. Furthermore, some identities are proved.

Tài liệu tham khảo

Jódar, L., Company, R., Navarro, E.: Laguerre matrix polynomials and system of second-order differential equations. Appl. Numer. Math. 15, 53–63 (1994) Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations. J. Approx. Theory Appl. 12(2), 20–30 (1996) Sayyed, K.A.M., Metwally, M.S., Batahan, R.S.: Gegenbauer matrix polynomials and second order matrix differential equations. Divulg. Mat. 12(2), 101–115 (2004) Defez, E., Jódar, L.: Some applications of the Hermite matrix polynomials series expansions. J. Comput. Appl. Math. 99, 105–117 (1998) Defez, E., Garcia-Honrubia, M., Villanueva, R.J.: Aprocedure for computing the exponential of a matrix using Hermite matrix polynomials. Far East J. Appl. Math. 6(3), 217–231 (2002) Jódar, L., Defez, E.: Some new matrix formulas related to Hermite matrix polynomials theory. In: M. Alfaro et al. (eds.) Proceedings of the International Workshop on Orthogonal Polynomials in Mathematical Physics, Legans, pp. 24–26 (1996) Jódar, L., Defez, E.: On Hermite matrix polynomials and Hermite matrix function. J. Approx. Theory Appl. 14(1), 36–48 (1998) Sayyed, K.A.M., Metwally, M.S., Batahan, R.S.: On generalized Hermite matrix polynomials. Electron. J. Linear Algebra 10, 272–279 (2003) Batahan, R.S.: A new extension of Hermite matrix polynomials and its applications. Linear Algebra Appl. 419, 82–92 (2006) Dunford, N., Schwartz, J.: Linear Operators, Part I. Interscience, New York (1956) Defez, E., Hervás, A., Jódar, L., Law, A.: Bounding Hermite matrix polynomials. Math. Comput. Model. 40, 117–125 (2004) Andrews, G., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999) Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (2004) Szego, G.: Beitrag zur Theorie der Thetafunktionen, Sitz. Preuss. Akad. Wiss. Phys. Math. Kl., XIX (1926) 242–252, Reprinted in “Collected Papers”, edited by R. Askey, vol. I, Birkhauser, Boston (1982) Koekoek, R., Swarttouw, R.F.: The Askeyscheme of hypergeometric orthogonal polynomials and its \(q\)-analogue. In: Report 98-17. Delft University of Technology, Delft (1998) Arik, M., Atakishiyev, N.M., Rueda, J.P.: Discrete \(q\)-Hermite polynomials are linked by the integral and finite Fourier transforms. Int. J. Differ. Equ. 1(2), 195–204 (2006) Salem, A.: On a \(q\)-gamma and a \(q\)-beta matrix functions. Linear Multilinear Algebra 60(6), 683–696 (2012) Salem, A.: The basic Gauss hypergeometric matrix function and its matrix \(q\)-difference equation. Linear Multilinear Algebra 62(3), 347–361 (2014) Salem, A.: The q-Laguerre matrix polynomials. SpringerPlus 5, 550 (2016) Jackson, F.H.: \(q\)-form of Taylors theorem. Messenger Math. 39, 62–64 (1906)