On the Dirac–Frenkel Variational Principle on Tensor Banach Spaces

Springer Science and Business Media LLC - Tập 19 Số 1 - Trang 159-204 - 2019
Antonio Falcó1, Wolfgang Hackbusch2, Anthony Nouy3,4
1Departamento de Ciencias, Físicas, Matemáticas y de la Computación
2MIS MPG Leipzig
3Laboratoire de Mathématiques Jean Leray
4École Centrale de Nantes

Tóm tắt

Từ khóa


Tài liệu tham khảo

P. A. Absil, R. Mahoni, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, 2008.

Y. I. Alber, James orthogonality and orthogonal decompositions of Banach spaces. J. Math. Anal. Appl.  312 (2005), 330–342.

A. Arnold and T. Jahnke, On the approximation of high-dimensional differential equations in the hierarchical Tucker format. BIT Numer. Math. 54 (2014), 305–341.

C. Bardos, I .Catto, N. Mauser and S. Trabelsi, Setting and Analysis of the multiconfiguration time-dependent Hartree-Fock equations, Arch. Rational Mech. Anal.  198 Issue 1 (2010), 273–330.

M. S. Berger, Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis. Academic Press, Cambridge, 1997.

D. Belita, Smooth homogeneous structures in operator theory. Chapman & Hall/CRC Press, Boca Raton, 2006.

I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Springer-Verlag, 1990.

G. Dirr, V. Rakocevic, and H. K. Wimmer, Estimates for projections in Banach spaces and existence of direct complements. Studia Math., 170:2 (2005), 211–216.

A. Douady, Le problème des modules pour les sous–espaces analytiques compacts d’un espace analytique donné. Annales de l’Institut Fourier, 16 (1) (1966), 1–95.

M. Fabian, P. Habala, P. Hajek, and V. Montesinos, Banach Space Theory. Springer-Verlag, 2011.

A. Falcó and W. Hackbusch, Minimal subspaces in tensor representations. Found. Comput. Math.  12 (2012), 765–803.

A. Falcó and A. Nouy, Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numer. Math.  121 (2012), 503–530.

K. Floret, Weakly compact sets, Lect. Notes Math., vol.119. Springer-Verlag, 1980.

W. H. Greub, Linear Algebra, Graduate Text in Mathematics, 4th ed., Springer-Verlag, 1981.

A. Grothendieck, Résumé de la th éorie métrique des produit tensoriels topologiques. Bol. Soc. Mat. S ão Paulo  8 (1953/56), 1–79.

E. Hairer, C. Lubich, and G. Wanner, Geometrical Numerical Integration: Structure-Preserving Algo-rithms for Ordinary Differential Equations, 2nd ed., Springer-Verlag, 2006.

J. Haegeman, M. Mariën, T. J. Osborne, and F. Verstraete, Geometry of matrix product states: Metric, parallel transport, and curvature. Journal of Mathematical Physics  55, 021902 (2014).

W. Hackbusch and S. Kühn, A new scheme for the tensor representation. J. Fourier Anal. Appl.  15 (2009), 706–722.

W. Hackbusch, Tensor spaces and numerical tensor calculus. Springer-Verlag, 2012.

P. Hájek and M. Johanis, Smooth analysis in Banach spaces. Series in Non-linear analysis and applications 19, Walter de Gruyter, 2014.

D. R. Hartree, The calculation of atomic structures. Chapman & Hall, 1957.

S. Holtz, Th. Rohwedder, and R. Schneider, On manifold of tensors of fixed TT rank. Numer. Math.  121 (2012), 701–731.

S. Kamimura and W. Takahashi, Strong convergence of a proximal–type algorithm in a Banach space. SIAM J. Optim.  13 (2003), 938–945.

O. Koch and C. Lubich, Dynamical tensor approximation. SIAM J. Matrix Anal. Appl.  31 (2010), 2360-2375.

S. Lang, Differential and Riemannian Manifolds. Graduate Texts in Mathematics 160. Springer–Verlag, 1995.

W. A. Light and E. W. Cheney, Approximation theory in tensor product spaces. Lect. Notes Math. 1169, Springer–Verlag, 1985.

C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. European Mathematical Society, 2008.

J. E. Marsden, T. Ratiu, and R. Abraham, Manifolds, Tensor Analysis, and Applications. Springer-Verlag, 1988.

B. Simon, Uniform crossnorms. Pacific J. Math.  46 (1973), 555–560.

I. V. Oseledets, A new tensor decomposition. Doklady Math.  80 (2009), 495–496.

I. V. Oseledets, Tensor-train decomposition. SIAM J. Sci. Comput.  33 (2011), 2295–2317.

I. V. Oseledets and E. E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays. Linear Algebra Appl.  432 (2010), 70-88.

E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen I, Math. Ann.  63 (1906), 433-476.

H. Upmeier, Symmetric Banach manifolds and Jordan $$ C^*$$ C ∗ Algebras. North–Holland, 1985.

A. Uschmajew and B. Vandereycken, The geometry of algorithms using hierarchical tensors. Linear Algebra and its Applications, Volume 439, Issue 1, (2013) 133-166.

F. Verstraete and J. I. Cirac, Matrix product states represent ground states faithfully. Phys. Rev. B - Condens. Matter Mater. Phys.  73, 094423 (2006).

G. Vidal, Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett.  91 (14), 147902 (2003).