On the De Boer–Pellikaan method for computing minimum distance

Journal of Symbolic Computation - Tập 45 - Trang 965-974 - 2010
Ştefan O. Tohaˇneanu1
1Department of Mathematics, Middlesex College, The University of Western Ontario, London, Ontario N6A 5B7, Canada

Tài liệu tham khảo

Ashikhmin, 1998, Minimal vectors in linear codes, IEEE Trans. Inform. Theory, 44, 2010, 10.1109/18.705584 Ballico, 2006, The Horace method for error-correcting codes, Appl. Algebra Engrg. Commun. Comput., 17, 135, 10.1007/s00200-006-0012-y Cox, 1998 De Boer, 1999, Grobner bases for codes, 237 Dumer, 2003, Hardness of approximating the minimum distance of a linear code, IEEE Trans. Inform. Theory, 49, 22, 10.1109/TIT.2002.806118 Eisenbud, 2005 Eisenbud, 1992, Direct methods for primary decompositions, Invent. Math, 110, 207, 10.1007/BF01231331 Gold, 2005, Cayley–Bacharach and evaluation codes on complete intersections, J. Pure Appl. Algebra, 196, 91, 10.1016/j.jpaa.2004.08.015 Hansen, 1994, Points in uniform position and maximum distance separable codes, 205 1998 Massey, J., 1993. Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish–Russian International Workshop on Information Theory, Molle, Sweden, pp. 276–279. Migliore, 2004, A symbolic test for (i,j)-uniformity in reduced zero-dimensional schemes, J. Symbolic Comput., 37, 403, 10.1016/j.jsc.2003.10.001 Tohaneanu, S., A computational criterion for the supersolvability of line arrangements, Ars Combinatoria (in press). Tohaneanu, 2009, Lower bounds on minimal distance of evaluation codes, Appl. Algebra Engrg. Commun. Comput., 20, 351, 10.1007/s00200-009-0102-8 Tsfasman, 2007