On the Davis-Wielandt shell of an operator and the Davis-Wielandt index of a normed linear space

Collectanea Mathematica - Tập 73 - Trang 521-533 - 2021
Pintu Bhunia, Debmalya Sain1, Kallol Paul2
1Department of Mathematics, Indian Institute of Science, Bengaluru, India
2Department of Mathematics, Jadavpur University, Kolkata, India

Tóm tắt

We study the Davis-Wielandt shell and the Davis-Wielandt radius of an operator on a normed linear space $$\mathcal {X}$$ . We show that after a suitable modification, the modified Davis-Wielandt radius defines a norm on $$\mathcal {L}(\mathcal {X})$$ which is equivalent to the usual operator norm on $$\mathcal {L}(\mathcal {X})$$ . We introduce the Davis-Wielandt index of a normed linear space and compute its value explicitly in case of some particular polyhedral Banach spaces. We also present a general method to estimate the Davis-Wielandt index of any polyhedral finite-dimensional Banach space.

Tài liệu tham khảo

Bauer, F.L.: On the field of values subordinate to a norm. Numerische Mathematik 4, 103–113 (1962) Bhunia, P., Bhanja, A., Bag, S., Paul, K.: Bounds for the Davis-Wielandt radius of bounded linear operators. Ann. Funct. Anal. 12, 18 (2021). https://doi.org/10.1007/s43034-020-00102-9 Duncan, J., McGregor, C.M., Pryce, J.D., White, A.J.: The numerical index of a normed space. J. London Math. Soc. 2(2), 481–488 (1970) Davis, C.: The shell of a Hilbert-space operator. Acta Sci. Math. (Szeged) 29, 69–86 (1968) Feki, K., and Ahmed Mahmoud, S.A.O.: Davis-Wielandt shells of semi-Hilbertian space operators and its applications, Banach J. Math. Anal., 14(3): 1281–1304 (2020) Kadets, V., Martín, M., and Payá, R.: Recent progress and open questions on the numerical index of Banach spaces, RACSAM. Rev. R. Acad. Cien. Seria A. Mat., 100(1-2): 155–182 (2006) Li, C.-K., Poon, Y.-T., Sze, N.S.: Davis-Wielandt shells of operators. Oper. Matrices 2(3), 341–355 (2008) Lumer, G.: Semi-inner-product spaces. Trans. Amer. Math. Soc. 100, 29–43 (1961) Mandal, K., Bhanja, A., Bag, S., and Paul, K.: On the numerical range of operators on some special Banach spaces, J. Convex Anal., 29(1) (2022) Martín, M., Merí, J.: Numerical index of some polyhedral norms on the plane. Linear Multilinear Algebra 55(2), 175–190 (2007) Martín, M., Merí, J., Rodríguez-Palacios, Á.: Finite-dimensional Banach spaces with numerical index zero. Indiana Univ. Math. J. 53(5), 1279–1289 (2004) Martín, M., Merí, J., Rodríguez-Palacios, Á.: Finite-dimensional Banach spaces with numerical index zero. Extracta Mathematicae 19(1), 151–153 (2004) McGregor, C.M.: Finite-dimensional normed linear spaces with numerical index \(1\). J. London Math. Soc. 2(3), 717–721 (1971) Sain, D., Paul, K., Bhunia, P., Bag, S.: On the numerical index of polyhedral Banach spaces. Linear Algebra Appl. 577, 121–133 (2019) Wielandt, H.: On eigenvalues of sums of normal matrices. Pac. J. Math. 5, 633–638 (1955)