On the Curvature of the Bismut Connection: Bismut–Yamabe Problem and Calabi–Yau with Torsion Metrics

The Journal of Geometric Analysis - Tập 33 - Trang 1-23 - 2023
Giuseppe Barbaro1
1Dipartimento di Matematica “Guido Castelnuovo”, Università la Sapienza, Rome, Italy

Tóm tắt

We study two natural problems concerning the scalar and the Ricci curvatures of the Bismut connection. Firstly, we study an analog of the Yamabe problem for Hermitian manifolds related to the Bismut scalar curvature, proving that, fixed a conformal Hermitian structure on a compact complex manifold, there exists a metric with constant Bismut scalar curvature in that class when the expected constant scalar curvature is non-negative. A similar result is given in the general case of Gauduchon connections. We then study an Einstein-type condition for the Bismut Ricci curvature tensor on principal bundles over Hermitian manifolds with complex tori as fibers. Thanks to this analysis, we construct explicit examples of Calabi–Yau with torsion Hermitian structures and prove a uniqueness result for them.

Tài liệu tham khảo

Angella, D., Otal, A., Ugarte, L., Villacampa, R.: On Gauduchon connections with Kähler-like curvature, To appear in Communications in Analysis and Geometry, arXiv:1809.02632 (2018) Angella, D., Calamai, S., Spotti, C.: On the Chern–Yamabe problem. Math. Res. Lett. 24(3), 645–677 (2017) Angella, D., Pediconi, F.: On cohomogeneity one Hermitian non-Káhler metrics, arXiv:2010.08475 (2021) Barbaro, G.: Griffiths positivity for Bismut curvature and its behaviour along Hermitian Curvature Flows. J. Geom. Phys. 169, 104323 (2021). https://doi.org/10.1016/j.geomphys.2021.104323 Borel, A.: Kählerian coset spaces of semi-simple Lie groups. Proc. Nat. Acad. Sci. 40, 1147–1151 (1954) Cavalcanti, G.R.: Hodge theory of SKT manifolds. Adv. Math. 374, 107270 (2020) Fu, J.-X., Yau, S.-T.: A Monge–Ampére-type equation motivated by string theory. Commun. Anal. Geom. 15(1), 29–76 (2007) Fu, J.-X., Yau, S.-T.: The theory of superstring with flux on non-Káhler manifolds and the complex Monge–Ampère equation. J. Differ. Geom. 78(3), 369–428 (2008) Garcia-Fernandez, M., Streets, J.: Generalized Ricci Flow. University Lecture Series, vol. 76. American Mathematical Society, Providence (2021) Gauduchon, P.: Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A 285(5), A387–A390 (1977) Gauduchon, P.: La \(1\)-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267(4), 495–518 (1984) Grantcharov, D., Grantcharov, G., Poon, Y.S.: Calabi–Yau connections with torsion on toric bundles. J. Differ. Geom. 78(1), 13–32 (2008) Grantcharov, G.: Geometry of compact complex homogeneous spaces with vanishing first Chern class. Adv. Math. 226(4), 3136–3159 (2011) Hull, C.M.: Compactifications of the heterotic superstring. Phys. Lett. B 178(4), 357–364 (1986) Ivanov, S., Papadopoulos, G.: Vanishing theorems and string backgrounds. Class. Quantum Gravity 18(6), 1089–1110 (2001) Koca, C., Lejmi, M.: Hermitian metrics of constant Chern scalar curvature on ruled surfaces. Kodai Math. J. 43(3), 409–430 (2020) Lejmi, M., Upmeier, M.: Integrability theorems and conformally constant Chern scalar curvature metrics in almost Hermitian geometry. Commun. Anal. Geom. 28(7), 1603–1645 (2020) Matsushima, Y.: Remarks on Kähler–Einstein manifolds. Nagoya Math. J. 46, 161–173 (1972) Podestà, F.: Homogeneous Hermitian manifolds and special metrics. Transform. Groups 23(4), 1129–1147 (2018) Streets, J.: Classification of solitons for pluriclosed flow on complex surfaces. Math. Ann. 375(3–4), 1555–1595 (2019) Streets, J.: Pluriclosed flow and the geometrization of complex surfaces. In: Chen, J., Lu, P., Lu, Z., Zhang, Z. (eds.) Geometric Analysis. Progress in Mathematics, vol. 333. Birkhauser, Cham (2020) Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. 16, 3101–3133 (2010) Streets, J., Tian, G.: Hermitian curvature flow. J. Eur. Math. Soc. 13(3), 601–634 (2011) Streets, J., Tian, G.: Generalized Kahler Geometry and the pluriclosed flow. Nucl. Phys. B 858(2), 366–376 (2012) Strominger, A.: Superstrings with torsion. Nucl. Phys. B 274(2), 253–284 (1986) Wang, H.-C.: Closed manifolds with homogeneous complex structure. Am. J. Math. 76, 1–32 (1954)