On the Convergence of Partial Sums with Respect to Vilenkin System on the Martingale Hardy Spaces

George Tephnadze1
1University of Georgia, Tbilisi, Georgia

Tóm tắt

Từ khóa


Tài liệu tham khảo

G. N. Agaev, N. Ya. Vilenkin, G. M. Dzafarly and A. I. Rubinshtein, Multiplicative systems of functions and harmonic analysis on zero-dimensional groups (Ehim, Baku, 1981).

M. Avdispahić, N. Memić, “On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups”, Acta Math. Hungar., 129 (4), 381–392, 2010.

I. Blahota, “Approximation by Vilenkin-Fourier sums in L p(G m)”, Acta Acad. Paed. Nyireg., 13, 35–39, 1992.

N. I. Fine, “OnWalsh function”, Trans.Amer.Math. Soc., 65, 372–414, 1949.

S. Fridli, “Approximation by Vilenkin-Fourier series”, ActaMath. Hung., 47 (1-2), 33–44, 1986.

G. Gát, “Investigations of certain operators with respect to the Vilenkin sistem”, Acta Math. Hung., 61, 131–149, 1993.

G. Gát, “Best approximation by Vilenkin-Like systems”, Acta Acad. Paed. Nyireg., 17, 161–169, 2001.

U. Goginava, G. Tkebuchava, “Convergence of subsequence of partial sums and logarithmic means of Walsh-Fourier series”, Acta Sci.Math (Szeged), 72, 159–177, 2006.

U. Goginava, “On Uniform convergence of Walsh-Fourier series”, Acta Math. Hungar., 93 (1-2), 59–70, 2001.

U. Goginava and A. Sahakian, “Convergence of double Fourier series and generalized Λ-variation”, Georgian Math. J., 19 (3), 497–509, 2012.

B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Walsh series and transforms (Kluwer, Dordrecht, 1991).

N. V. Guličev, “Approximation to continuous functions byWalsh-Fourier series”, Analysis Math., 6, 269–280, 1980.

S. F. Lukomskii, “Lebesgue constants for characters of the compact zero-dimensional abelian group”, East J. Approx., 15 (2), 219–231, 2009.

F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh series. An introduction to dyadic harmonic analysis (Adam Hilger, Bristol, 1990).

P. Simon, “Strong convergence TheoremforVilenkin-Fourier Series”, Journal ofMathematical Analysis and Applications, 245, 52–68, 2000.

G. Tephnadze, “On the Vilenkin-Fourier coefficients”, Georgian Math. J., (to appear).

G. Tephnadze, “A note on the Fourier coefficients and partial sums of Vilenkin-Fourier series”, Acta Acad. Paed. Nyireg., 28, 167–176, 2012.

G. Tephnadze, “On the partial sums of Vilenkin-Fourier series”, J. Contemp. Math. Anal., 49 (1), 23–32, 2014.

G. Tephnadze, “A note on the norm convergence by Vilenkin-Fejér means”, Georgian Math. J., 21 (4), 511–517, 2014.

G. Tephnadze, “On the partial sums of Walsh-Fourier series”, Colloq. Math., 141 (2), 227–242, 2015.

G. Tephnadze, “Martingale Hardy Spaces and Summability of the One Dimensional Vilenkin-Fourier Series”, PhD thesis, Department of Engineering Sciences andMathematics, Luleå University of Technology, ISSN 1402–1544, Oct. 2015.

N. Ya. Vilenkin, “A class of complete orthonormal systems”, Izv. Akad. Nauk SSSR, Ser. Mat., 11, 363–400, 1947.

F. Weisz, Martingale Hardy spaces and their applications in Fourier Analysis, (Springer, Berlin, 1994).

F. Weisz, “Hardy spaces and Cesaro means of two-dimensional Fourier series”, Bolyai Soc. math. Studies, 353–367, 1996.