Về sự hội tụ của các hàm Nekrasov

Annales Henri Poincaré - Trang 1-37 - 2023
Paolo Arnaudo1, Giulio Bonelli2, Alessandro Tanzini3
1International School of Advanced Studies (SISSA), Trieste, Italy
2INFN, Trieste, Italy
3Institute for Geometry and Physics (IGAP), Trieste, Italy

Tóm tắt

Trong bài viết này, chúng tôi trình bày một số kết quả về sự hội tụ của các hàm phân hoạch Nekrasov dưới dạng chuỗi lũy thừa trong tham số đếm instanton. Chúng tôi tập trung vào các lý thuyết gauge U(N) $$\mathcal N=2$$ trong bốn chiều với vật chất ở các đại diện phụ thuộc và đại diện cơ bản của nhóm gauge, và tìm ra các giới hạn dưới nghiêm ngặt cho bán kính hội tụ trong hai trường hợp: nếu lý thuyết là đồng dạng thì chuỗi có ít nhất một bán kính hội tụ hữu hạn, trong khi nếu nó là tự do asymptotic thì có bán kính hội tụ vô hạn. Thông qua sự tương ứng AGT, điều này ngụ ý rằng các khối đồng dạng không đều có liên quan của đại số $$W_N$$ cho phép một sự mở rộng theo lũy thừa trong mô-đun hội tụ trong toàn bộ mặt phẳng. Bằng cách quy về trường hợp SU(2), chúng tôi áp dụng các kết quả của mình để phân tích các thuộc tính hội tụ của các hàm $$\tau$$ tương ứng của Painlevé.

Từ khóa

#Hàm Nekrasov #hội tụ #lý thuyết gauge #đồng dạng #các khối đồng dạng #đại số W_N #hàm tau Painlevé

Tài liệu tham khảo

Dyson, F.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85, 631–632 (1952). https://doi.org/10.1103/PhysRev.85.631 ’t Hooft, G.: Can we make sense out of “quantum chromodynamics’’? Subnucl. Ser. 15, 943 (1979) Nekrasov, N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2003). https://doi.org/10.4310/ATMP.2003.v7.n5.a4 Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. In: 16th International Congress on Mathematical Physics, pp. 265–289 (2009). https://doi.org/10.1142/9789814304634_0015 Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). https://doi.org/10.1007/s11005-010-0369-5 Gamayun, O., Iorgov, N., Lisovyy, O.: Conformal field theory of Painlevé VI. JHEP 10, 038 (2012). https://doi.org/10.1007/JHEP10(2012)038. (Erratum: JHEP 10, 183 (2012)) Bonelli, G., Lisovyy, O., Maruyoshi, K., Sciarappa, A., Tanzini, A.: On Painlevé/gauge theory correspondence. Lett. Math. Phys. 107, 2359 (2017). https://doi.org/10.1007/s11005-017-0983-6 Grassi, A., Gu, J., Mariño, M.: Non-perturbative approaches to the quantum Seiberg-Witten curve. JHEP 07, 106 (2020). https://doi.org/10.1007/JHEP07(2020)106 Fioravanti, D., Gregori, D.: Integrability and cycles of deformed \({\cal{N}}=2\) gauge theory. Phys. Lett. B 804, 135376 (2020). https://doi.org/10.1016/j.physletb.2020.135376 Bonelli, G., Iossa, C., Lichtig, D.P., Tanzini, A.: Irregular Liouville correlators and connection formulae for Heun functions. Commun. Math. Phys. (2022). https://doi.org/10.1007/s00220-022-04497-5 Lisovyy, O., Naidiuk, A.: Perturbative connection formulas for Heun equations (2022). arXiv:2208.01604 [math-ph] Gamayun, O., Iorgov, N., Lisovyy, O.: How instanton combinatorics solves Painlevé VI, V and IIIs. J. Phys. A 46, 335203 (2013). https://doi.org/10.1088/1751-8113/46/33/335203 Its, A., Lisovyy, O., Tykhyy, Y.: Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks. Int. Math. Res. Not. (2014). https://doi.org/10.1093/imrn/rnu209 Wyllard, N.: \(A_(N-1)\) conformal Toda field theory correlation functions from conformal \(\cal{N} = 2\) SU(N) quiver gauge theories. JHEP 11, 002 (2009). https://doi.org/10.1088/1126-6708/2009/11/002 Gaiotto, D.: Asymptotically free \(\cal{N} = 2\) theories and irregular conformal blocks. J. Phys. Conf. Ser. 462, 012014 (2013). https://doi.org/10.1088/1742-6596/462/1/012014 Bonelli, G., Maruyoshi, K., Tanzini, A.: Wild quiver gauge theories. JHEP 02, 031 (2012). https://doi.org/10.1007/JHEP02(2012)031 Gaiotto, D., Teschner, J.: Irregular singularities in Liouville theory and Argyres–Douglas type gauge theories, I. JHEP 12, 050 (2012). https://doi.org/10.1007/JHEP12(2012)050 Kanno, H., Maruyoshi, K., Shiba, S., Taki, M.: \(\cal{W} _3\) irregular states and isolated \(\cal{N} = 2\) superconformal field theories. JHEP 03, 147 (2013). https://doi.org/10.1007/JHEP03(2013)147 Lisovyy, O., Nagoya, H., Roussillon, J.: Irregular conformal blocks and connection formulae for Painlevé V functions. J. Math. Phys. 59, 091409 (2018). https://doi.org/10.1063/1.5031841 Ghosal, P., Remy, G., Sun, X., Sun, Y.: Analiticity and Symmetry of Virasoro Conformal blocks via Liouville CFT. http://www.math.columbia.edu/~remy/files/Modular_Equation.pdf(in preparation) Guillarmou, C., Kupiainen, A., Rhodes, R., Vargas, V.: Conformal bootstrap in Liouville theory.arXiv:2005.11530 [math.PR] Ghosal, P., Remy, G., Sun, X., Sun, Y.: Probabilistic conformal blocks for Liouville CFT on the torus. arXiv:2003.03802 [math.PR] Bershtein, M.A., Shchechkin, A.I.: q-deformed Painlevé \(\tau \) function and q-deformed conformal blocks. J. Phys. A 50, 085202 (2017). https://doi.org/10.1088/1751-8121/aa5572 Felder, G., Müller-Lennert, M.: Analyticity of Nekrasov partition functions. Commun. Math. Phys. 364, 683–718 (2018). https://doi.org/10.1007/s00220-018-3270-1 Gottsche, L., Nakajima, H., Yoshioka, K.: Donaldson = Seiberg–Witten from Mochizuki’s formula and instanton counting. Publ. Res. Inst. Math. Sci. Kyoto 47, 307–359 (2011) Fucito, F., Morales, J.F., Poghossian, R., Tanzini, A.: \(\cal{N}=1\) superpotentials from multi-instanton calculus. JHEP 01, 031 (2006). https://doi.org/10.1088/1126-6708/2006/01/031 Argyres, P.C., Douglas, M.R.: New phenomena in SU(3) supersymmetric gauge theory. Nucl. Phys. B 448, 93 (1995). https://doi.org/10.1016/0550-3213(95)00281-V Gavrylenko, P., Lisovyy, O.: Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions. Commun. Math. Phys. 363, 1 (2018). https://doi.org/10.1007/s00220-018-3224-7 Zamolodchikov, A.B.: Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude. Commun. Math. Phys. 96, 419 (1984). https://doi.org/10.1007/BF01214585 Poghossian, R.: Recurrence relations for the \( {\cal{W}}_3 \) conformal blocks and \( \cal{N}=2 \) SYM partition functions. JHEP 11, 053 (2017). https://doi.org/10.1007/JHEP11(2017)053. (Erratum: JHEP 01, 088 (2018)) Sysoeva, E., Bykov, A.: Recurrence relation for instanton partition function in SU(N) gauge theory (2022). arXiv:2209.14949 [hep-th] Han, G.-N.: The Nekrasov–Okounkov hook length formula: refinement, elementary proof, extension and applications. Annales de l’Institut Fourier Tome 60(1), 1–29 (2010) Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999) Müller, T.W., Schlage-Puchta, J.-C.: Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks. Adv. Math. 213, 919–982 (2007) Tao, T.: The number of cycles in a random permutation (2011). https://terrytao.wordpress.com/2011/11/23/the-number-of-cycles-in-a-random-permutation/ Ford, K.: Cycle type of a random permutations: a toolkit (2021). arXiv:2104.12019 Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918) Choi, J., Srivastava, H., Adamchik, V.: Multiple gamma and related functions. Appl. Math. Comput. 134(2–3), 515 (2003). https://doi.org/10.1016/S0096-3003(01)00301-0 Bonelli, G., Del Monte, F., Gavrylenko, P., Tanzini, A.: \({\cal{N}}\) = \(2^*\) gauge theory, free fermions on the Torus and Painlevé VI. Commun. Math. Phys. 377, 1381 (2020). https://doi.org/10.1007/s00220-020-03743-y Bonelli, G., Del Monte, F., Gavrylenko, P., Tanzini, A.: Circular quiver gauge theories, isomonodromic deformations and \(W_N\) fermions on the torus. Lett. Math. Phys. (2019). https://doi.org/10.1007/s11005-020-01343-4 Bruzzo, U., Fucito, F., Morales, J.F., Tanzini, A.: Multiinstanton calculus and equivariant cohomology. JHEP 05, 054 (2003). https://doi.org/10.1088/1126-6708/2003/05/054 Flume, R., Poghossian, R.: An algorithm for the microscopic evaluation of the coefficients of the Seiberg–Witten prepotential. Int. J. Mod. Phys. A 18, 2541 (2003). https://doi.org/10.1142/S0217751X03013685