On the Construction of Cosine Operator Functions and Semigroups on Function Spaces with Generator a(x)(d2dx2)+b(x)(d/dx)+c(x); Theory
Tóm tắt
In this paper we develop a method to solve exactly partial differential equations of the type (∂
n
/∂t
n
)f(x,t)=(a(x)(∂
n
/∂x
n
)+b(x) (∂/∂x+c(x))f(x,t); n=1,2, with several boundary conditions, where f·,t) lies in a function space. The most powerful tool here is the theory of cosine operator functions and their connection to (holomorphic) semigroups. The method is that generally we are able to unify and generalize many theorems concerning problems in the theories of holomorphic semigroups, cosine operator functions, and approximation theory, especially these dealing with approximation by projections. These applications will be found in [14].
Tài liệu tham khảo
F. Altomare and M. Campiti, Korovkin-TypeApproximation Theory and Its Applications, Walter de Gruyter Studies in Mathematics 17, Walter de Gruyter, Berlin, 1994.
A. Attalienti and S. Romanelli, On some classes of analytic semigroups on C([a, b]) related to ℝ or Γ-admissible mappings, Evolution Equations (Ph. Clément et al., eds.), Lecture Notes in Pure and Applied Mathematics 168, Marcel Dekker, New York, 1995, pp. 29–34.
V. Barbu and A. Favini, The analytic semigroups generated by a second-order differential operator in C[0, 1], Rend. Circ. Mat. Palermo, Serie II 52, 23–42 (1998).
P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Grundlehren Math. Wiss. 145, Springer, Berlin, 1967.
P. L. Butzer and A. Gessinger, The approximation theoretical behaviour of specific hyperbolic differential equations at zero and infinity, Approximation Theory, Proc. Intern. Dortmund Meeting IDoMAT 95, Witten, March 13–17, 1995 (M. W. Müller iet al., eds.), Akademie Verlag, Berlin, 1995, pp. 27–51.
P. L. Butzer and A. Gessinger, Connections between the approximation of semigroup and cosine operator functions, Atti Semin. Mat. Fis. Univ. Modena 45, 81–142 (1997).
M. Campiti and G. Metafune, Ventcel's boundary conditions and analytic semigroups, Arch. Math. 70, 377–390 (1998).
Ph. Clément and C. A. Timmermans, On C 0-semigroups generated by differential operators satisfying Ventcel's boundary condition, Indig. Math. 48, 379–387 (1986).
H. O. Fattorini, Ordinary differential equations in linear topological spaces I, J. Differ. Equations 5, 72–105 (1968).
A. Favini, J. Goldstein, and S. Romanelli, An analytic semigroup associated to a degenerate evolution equation, Stochastic Processes and Functional Analysis (J. A. Goldstein, N. E. Gretsky, and J. Uhl, eds.), Lecture Notes in Pure and Applied Mathematics 186, Marcel Dekker, New York, 1996, pp. 85–100.
A. Favini and S. Romanelli, Analytic semigroups on C([0, 1]) generated by some classes of second order differential equations, Semigroup Forum 56, 362–372 (1998).
A. Gessinger, Der Zusammenhang zwischen dem approximations-und ergodentheoretischen Verhalten von Halbgruppen und Kosinusoperatorfunktionen; neue Anwendungen der Kosinusoperatortheorie, Ph.D. Thesis, RWTH Aachen, Shaker, Aachen, 1997.
A. Gessinger, Connections between the approximation and ergodic behaviour of cosine operators and semigroups, Rend. Circ. Mat. Palermo, Serie II 52, 475–489 (1998).
A. Gessinger, On the construction of cosine operator functions and semigroups on function spaces with generator a(x)(d 2/dx 2) + b(x)(d/dx) + C(x); Applications, (in press).
J. A. Goldstein and C.-L. Lin, Degenerate parabolic problems and the Wentzel boundary condition, Semigroup Theory and Applications, Lecture Notes in Pure and Applied Mathematics 116, Marcel Dekker, New York, 1989, pp. 189–199.
D. Lutz, Periodische operatorwertige Cosinusfunktionen, Result. Math. 4, 75–83 (1981).
R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics 1184, Springer, Berlin, 1986.
H. Serizawa and M. Watanabe, Perturbation for cosine families in Banach spaces, Houston J. Math. 12, 117–224 (1986).
M. Sova, Cosine operator functions, Rozpr. Matem. 49, 1–47 (1966).
M. Sova, Equations différentielles opérationelles linéaires du second ordre à coefficients constants, Rozpr. Česko. Akad. Ved Rada Mat. Prirod. Ved 80, 1–69 (1970).
M. Sova, Perturbation numeriques des évolutions parabolique et hyperbolique, Cas. Pest. 96, 406–425 (1971).
C. C. Travis and G. F. Webb, Perturbation of strongly continuous cosine family generators, Colloq. Math. 45, 277–285 (1981).
A. D. Wentzel, On boundary conditions for multidimensional diffusion processes, Theory Probab. Appl. 4, 164–177 (1959).