On the Complexity of k-SAT
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alon, 1992
Beigel, 1995, 3-Coloring in time O(1.3446n) time: a no-MIS algorithm
Crawford, 1996, Experimental results on the crossover point in random 3SAT, Artificial Intelligence, 81, 10.1016/0004-3702(95)00046-1
E. A. Hirsch, Two new upper bounds for SAT, in, SIAM Conference on Discrete Algorithms, 1997.
R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complexity, in 1998 Annual IEEE Symposium on Foundations of Computer Science, pp. 653–662.
Jian, 1986, An O(20.304n) algorithm for solving maximum independent set problem, IEEE Trans. Comput., 35, 847, 10.1109/TC.1986.1676847
O. Kullmann, and, H. Luckhardt, Deciding propositional tautologies: algorithms and their complexity, submitted.
Lawler, 1976, A note on the complexity of the chromatic number problem, Inform. Process. Lett., 5, 66, 10.1016/0020-0190(76)90065-X
Monien, 1985, Solving satisfiability in less than 2n steps, Discrete Appl. Math., 10, 287, 10.1016/0166-218X(85)90050-2
Paturi, 1997, Satisfiability coding lemma
Paturi, 1998, An improved exponential-time algorithm for k-SAT
Robson, 1986, Algorithms for maximum independent sets, J. Algorithms, 7, 425, 10.1016/0196-6774(86)90032-5
Schiermeyer, 1993, Solving 3-satisfiability in less than 1.579n steps, 702
Schiermeyer, 1996, Pure literal look ahead: an O(1.497n) 3-satisfiability algorithm, Technical Report, University of Köln
Schöning, 1999, A probabilistic algorithm for k-SAT and constraint satisfaction problems
B. Selman, Personal communication, 1999.
Shindo, 1990, A simple algorithm for finding a maximum clique and its worst-case time complexity, Systems Comput. Japan, 21, 1, 10.1002/scj.4690210301