On the Christoffel Function for the Generalized Jacobi Measures on a Quasidisk

Springer Science and Business Media LLC - Tập 47 - Trang 437-452 - 2017
Vladimir V. Andrievskii1
1Department of Mathematical Sciences, Kent State University, Kent, USA

Tóm tắt

We establish the exact (up to the constants) double inequality for the Christoffel function for a measure supported on a Jordan domain bounded by a quasiconformal curve. We show that this quasiconformality of the boundary cannot be omitted.

Tài liệu tham khảo

Abdullaev, F.G.: The properties of the orthogonal polynomials with weight having singularity on the boundary contour. J. Comput. Anal. Appl. 6(1), 43–60 (2004) Abdullaev, F.G., Deger, U.: On the orthogonal polynomials with weight having singularities on the boundary of region in the complex plane. Bull. Belg. Math. Soc. 16, 235–250 (2009) Ahlfors, L.V.: Quasiconformal reflections. Acta Math. 109, 291–301 (1963) Ahlfors, L.V.: Lectures on Quasiconformal Mappings. Van Nostrand, Princeton (1966) Andrievskii, V.V.: Polynomial approximation of analytic functions on a finite number of continua in the complex plane. J. Approx. Theory 133, 238–244 (2005) Andrievskii, V.V.: Weighted \(L_p\) Bernstein-type inequalities on a quasismooth curve in the complex plane. Acta Math. Hung. 135(1–2), 8–23 (2012) Andrievskii, V.V., Belyi, V.I., Dzjadyk, V.K.: Conformal Invariants in Constructive Theory of Functions of Complex Variable. World Federation Publisher, Atlanta (1995) Andrievskii, V.V., Blatt, H.-P.: Discrepancy of Signed Measures and Polynomial Approximation. Springer, Berlin (2002) Aptekarev, A., Denisov, S., Tulyakov, D.: On a problem by Steklov. J. Am. Math. Soc. 29, 1117–1165 (2016) Belyi, V.I.: Conformal mappings and the approximation of analytic functions in domains with a quasiconformal boundary. Math. USSR Sb. 31, 289–317 (1977) Denisov, S.: Remark on the formula by Rakhmanov and Steklov’s conjecture. J. Approx. Theory 205, 102–113 (2016) Dzjadyk, V.K.: Introduction to the Theory of Uniform Approximation of Functions by Polynomials. Nauka, Moscow (1977). (Russian) Gustafsson, B., Putinar, M., Saff, E.B., Stylianopolous, N.: Bergman polynomials on an archipelago: estimates, zeros and shape reconstruction. Adv. Math. 222, 1405–1460 (2009) Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane, 2nd edn. Springer, New York (1973) Löwner, K.: Über Extremumsätze der konformen Abbildung des Äusseren des Einheitskreises. Math. Z. 3, 65–77 (1919) Pommerenke, Ch.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975) Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992) Rakhmanov, E.A.: Estimates on the growth of orthogonal polynomials whose weight is bounded away from zero. Mat. Sb., 114(156)(2): 269–298. English translation. In: Math. USSR Sb. 42, 237–263 (1981) Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press, Cambridge (1995) Saff, E.B., Stahl, H., Stylianopoulos, N., Totik, V.: Orthogonal polynomials for area-type measures and image recovery. SIAM J. Math. Anal. 47(3), 2442–2463 (2015) Simon, B.: The Christoffel–Darboux kernel. Proc. Symp. Pure Math. 79, 295–335 (2008) Stylianopolous, N.: Strong asymptotics for Bergman polynomials over domains with corners and applications. Construct. Approx. 38(1), 59–100 (2013) Stylianopolous, N.: Boundary estimates for Bergman polynomials in domains with corners. Contempl. Math. 661, 187–198 (2016) Suetin, P.K.: Polynomials Orthogonal over a Region and Bieberbach Polynomials. American Mathematical Society, Prividence (1974) Totik, V.: Orthogonal polynomials. Surv. Approx. Theory 1, 70–125 (2005) Totik, V.: Christoffel functions on curves and domains. Trans. Am. Math. Soc. 362, 2053–2087 (2010) Totik, V.: Asymptotics of Christoffel functions on arcs and curves. Adv. Math. 252, 114–149 (2014) Totik, V., Varga, T.: Chebyshev and fast decreasing polynomials. Proc. Lond. Math. Soc. 110(3), 1057–1098 (2015) Varga, T.: Christoffel functions for doubling measures on quasismooth curves and arcs. Acta Math. Hung. 141(1–2), 161–184 (2013)