On the Balanced Minimum Evolution polytope
Tóm tắt
Từ khóa
Tài liệu tham khảo
Felsenstein, 2004
Catanzaro, 2011, Estimating phylogenies from molecular data, 149
Catanzaro, 2012, The balanced minimum evolution problem, INFORMS J. Comput., 24, 276, 10.1287/ijoc.1110.0455
Rinnooy Kan, 1978, The complexity of the network design problem, Networks, 8, 279, 10.1002/net.3230080402
Pauplin, 2000, Direct calculation of a tree length using a distance matrix, J. Mol. Evol., 51, 41, 10.1007/s002390010065
Desper, 2004, Theoretical foundations of the balanced minimum evolution method of phylogenetic inference and its relationship to the weighted least-squares tree fitting, Mol. Biol. Evol., 21, 587, 10.1093/molbev/msh049
Fiorini, 2012, Approximating the balanced minimum evolution problem, Oper. Res. Lett., 40, 31, 10.1016/j.orl.2011.10.003
Aringhieri, 2011, Optimal solutions for the balanced minimum evolution problem, Comput. Oper. Res., 38, 1845, 10.1016/j.cor.2011.02.020
Pardi, 2009
Catanzaro, 2009, The minimum evolution problem: Overview and classification, Networks, 53, 112, 10.1002/net.20280
Gascuel, 2005
Huffman, 1952, A method for the construction of minimum redundancy codes
Parker, 1996, The construction of Huffman codes is a submodular (“convex”) optimization problem over a lattice of binary trees, SIAM J. Comput., 28, 1875, 10.1137/S0097539796311077
Sayood, 2017
Eickmeyer, 2008, On the optimality of the neighbor-joining algorithm, Algorithms Mol. Biol., 3, 1
Haws, 2011, Optimality of the neighbor joining algorithm and faces of the balanced minimum evolution polytope, Bull. Math. Biol., 73, 2627, 10.1007/s11538-011-9640-x
Forcey, 2016, Facets of the balanced minimal evolution polytope, J. Math. Biol., 73, 447, 10.1007/s00285-015-0957-1
Gawrilow, 2000, Polymake: A framework for analyzing convex polytopes, 43
Billera, 2001, Geometry of the space of phylogenetic trees, Adv. Appl. Math., 27, 733, 10.1006/aama.2001.0759
Forcey, 2017, Split-facets for balanced minimal evolution polytopes and the permutoassociahedron, Bull. Math. Biol., 79, 975, 10.1007/s11538-017-0264-7
Kapranov, 1993, The permutoassociahedron, Mac Lane’s coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra, 85, 119, 10.1016/0022-4049(93)90049-Y
Reiner, 1993
Buneman, 1971, The recovery of trees from measure of dissimilarities, 387
Erdös, 1999, A few logs suffice to build (almost) all trees: Part I, Random Struct. Algorithms, 14, 153, 10.1002/(SICI)1098-2418(199903)14:2<153::AID-RSA3>3.0.CO;2-R
Waterman, 1977, Additive evolutionary trees, J. Theoret. Biol., 64, 199, 10.1016/0022-5193(77)90351-4
Nemhauser, 1999
Wolfram Research, Inc. Mathematica, Version 11.3. Champaign, IL, 2018.
Reinhard, 2005