Về việc Ứng dụng Nguyên lý Bình quân trong Phương trình Giải tích Ngẫu nhiên Loại Siêu hình

Springer Science and Business Media LLC - Tập 55 - Trang 859-865 - 2003
Yu. A. Mitropol'skii1, V. H. Kolomiets'1, O. V. Kolomiets'2
1Institute of Mathematics, Ukrainian Academy of Sciences, Kiev
2Institute of Cybernetics, Ukrainian Academy of Sciences, Kiev

Tóm tắt

Chúng tôi chứng minh một định lý về việc ứng dụng nguyên lý bình quân Bogolyubov – Mitropol'skii cho các phương trình vi phân ngẫu nhiên loại hyperbolic.

Từ khóa

#Nguyên lý bình quân #phương trình vi phân ngẫu nhiên #định lý #phương trình loại hyperbolic.

Tài liệu tham khảo

N. N. Bogolyubov, On Some Statistical Methods in Mathematical Physics [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1945). I. I. Gikhman, “On one Bogolyubov theorem,” Ukr. Mat. Zh., 4, No. 2, 215–219 (1952). I. I. Gikhman and T. E. Pyasetskaya, “On one class of stochastic partial differential equations with two-parameter white noise,” in: Limit Theorems for Random Processes [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1977), pp. 71–92. T. L. Tsarenko, “On the existence and uniqueness of solutions of Darboux stochastic equations,” Kibernetika, No. 4, 115–117 (1972). I. I. Gikhman, “On the existence of weak solutions of one class of hyperbolic systems with two-parameter white noise,” in: Theory of Random Processes [in Russian], Issue 6 (1978), pp. 39–48. I. I. Gikhman, “On the first initial boundary-value problem for a stochastic hyperbolic equation,” in: Theory of Random Processes [in Russian], Issue 8 (1980), pp. 20–31. Il. I. Gikhman, “Solution of the initial boundary-value problem for a stochastic hyperbolic equation by the Fourier method,” in: Theory of Random Processes [in Russian], Issue 8 (1980), pp. 31–35. B. V. Bondarev, “Averaging in parabolic systems subjected to weakly dependent random actions. L1-approach,” Ukr. Mat. Zh., 43, No. 2, 167–172 (1991). B. V. Bondarev, “Averaging in parabolic systems subjected to weakly dependent random actions. L2-approach,” Ukr. Mat. Zh., 43, No. 3, 315–322 (1991). A. Ya. Dorogovtsev, S. D. Ivasishen, and A. G. Kukush, “Asymptotic behavior of solutions of the heat-conduction equation with white noise on the right-hand side,” Ukr. Mat. Zh., 37, No. 1, 13–20 (1985). S. Ya. Makhno, “Averaging principle for stochastic partial equations,” in: Theory of Random Processes [in Russian], Issue 8 (1980), pp. 113–117. B. L. Rozovskii, “On stochastic partial differential equations,” Mat. Sb., 96, No. 2, 314–341 (1975). Yu. A. Mitropol'skii, Averaging Method in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1971). S. D. Éidel'man, “On the application of the averaging principle to quasilinear parabolic systems of second order,” Sib. Mat. Zh., No. 2, 302–307 (1962). R. Z. Khas'minskii, “On the averaging principle for parabolic and elliptic differential equations and Markovian processes with small diffusion,” Teor. Ver. Primen., 3, No. 1, 3–25 (1963). Yu. A. Mitropol'skii and G. P. Khoma, Mathematical Justification of Asymptotic Methods in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1983). M. Kisilevich, “A Bogolyubov-type theorem for a hyperbolic equation,” Ukr. Mat. Zh., 22, No. 3, 365–370 (1970). I. I. Gikhman, “Differential equations with random functions,” in: Winter School on Probability Theory and Mathematical Statistics (Uzhgorod, February – March 1964) [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1964), pp. 41–86. A. D. Venttsel' and M. I. Freidlin, Fluctuation in Dynamical Systems under the Action of Small Random Perturbations [in Russian], Nauka, Moscow (1979).