On the Ambrosio–Figalli–Trevisan Superposition Principle for Probability Solutions to Fokker–Planck–Kolmogorov Equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambrosio, L.: Transport equation and Cauchy problem for non-smooth vector fields. Lect. Notes Math. 1927, 2–41 (2008)
Ambrosio, L.: Well posedness of ODE’s and continuity equations with nonsmooth vector fields, and applications. Rev. Mat. Complut. 30(3), 427–450 (2017)
Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Birkhäuser, Basel (2008)
Ambrosio, L., Trevisan, D.: Well-posedness of Lagrangian flows and continuity equations in metric measure spaces. Anal. PDE 7(5), 1179–1234 (2014)
Ambrosio, L., Trevisan, D.: Lecture notes on the DiPerna–Lions theory in abstract measure spaces. Ann. Fac. Sci. Toulouse Math. (6) 26(4), 729–766 (2017)
Barbu, V., Röckner, M.: Probabilistic representation for solutions to nonlinear Fokker–Planck equations. SIAM J. Math. Anal. 50(4), 4246–4260 (2018)
Barbu, V., Röckner, M.: From nonlinear Fokker–Planck equations to solutions of distribution dependent SDE. Ann. Probab. (2020) (accepted for publication) arXiv:1808.10706v4
Bogachev, V.I., Da Prato, G., Röckner, M.: Existence and uniqueness of solutions for Fokker–Planck equations on Hilbert spaces. J. Evol. Equ. 10(3), 487–509 (2010)
Bogachev, V.I., Da Prato, G., Röckner, M.: Uniqueness for solutions of Fokker–Planck equations on infinite dimensional spaces. Commun. Partial Differ. Equ. 36(6), 925–939 (2011)
Bogachev, V.I., Da Prato, G., Röckner, M., Shaposhnikov, S.V.: An analytic approach to infinite-dimensional continuity and Fokker–Planck–Kolmogorov equations. Annali Scuola Norm. Pisa 14, 983–1023 (2015)
Bogachev, V.I., Krylov, N.V., Röckner, M.: Elliptic and parabolic equations for measures (Russian). Uspehi Matem. Nauk 64(6), 5–116 (translation in Russian Math. Surveys 64(6), 973–1078) (2009)
Bogachev, V.I., Krylov, N.V., Röckner, M., Shaposhnikov, S.V.: Fokker–Planck–Kolmogorov equations. Amer. Math. Soc, Rhode Island (2015)
Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: On uniqueness problems related to elliptic equations for measures. J. Math. Sci. (New York) 176(6), 759–773 (2011)
Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: On uniqueness problems related to the Fokker–Planck–Kolmogorov equation for measures. J. Math. Sci. (New York) 179(1), 7–47 (2011)
Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: On uniqueness of solutions to the Cauchy problem for degenerate Fokker–Planck–Kolmogorov equations. J. Evol. Equ. 13(3), 577–593 (2013)
Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: Uniqueness problems for degenerate Fokker–Planck–Kolmogorov equations. J. Math. Sci. (New York) 207(2), 147–165 (2015)
Bonicatto, P., Gusev, N.A.: Non-uniqueness of signed measure-valued solutions to the continuity equation in presence of a unique flow (2018). arXiv:1809.10216
Ethier, S.N., Kurtz, T.G.: Markov Processes. Characterization and Convergence. Wiley, New York (1986)
Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254(1), 109–153 (2008)
Funaki, T.: A certain class of diffusion processes associated with nonlinear parabolic equations. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 67, 331–348 (1984)
Kurtz, T.G.: Martingale problems for conditional distributions of Markov processes. Electron. J. Probab. 3(9), 29 (1998)
Kurtz, T.G., Stockbridge, R.H.: Existence of Markov controls and characterization of optimal Markov controls. SIAM J. Control Optim. 36(2), 609–653 (1998)
Kurtz, T.G.: Equivalence of stochastic equations and martingale problems. In: Crisan, D. (ed.) Stochastic Analysis 2010, pp. 113–130. Springer, Heidelberg (2011)
Le Bris, C., Lions, P.-L.: Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients. Commun. Partial Differ. Equ. 33(7–9), 1272–1317 (2008)
Luo, D.: The Itô SDEs and Fokker–Planck equations with Osgood and Sobolev coefficients. Stochastics 90(3), 379–410 (2018)
Manita, O.A., Romanov, M.S., Shaposhnikov, S.V.: On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equations. Nonlinear Anal. 128, 199–226 (2015)
Manita, O.A., Shaposhnikov, S.V.: Nonlinear parabolic equations for measures (Russian). Algebra i Analiz 25(1), 64–93 (translation in St. Petersburg Math. J. 25(1), 43–62 (2014)) (2013)
Manita, O.A., Shaposhnikov, S.V.: On the Cauchy problem for Fokker–Planck–Kolmogorov equations with potential terms on arbitrary domains. J. Dyn. Differ. Equ. 28, 493–518 (2016)
Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)
Röckner, M., Zhang, X.: Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients. C. R. Math. Acad. Sci. Paris 348(7–8), 435–438 (2010)
Shaposhnikov, S.V.: On the uniqueness of the probabilistic solution of the Cauchy problem for the Fokker–Planck–Kolmogorov equation (Russian). Teor. Veroyatn. Primen. 56(1), 77–99 (translation in Theory Probab. Appl. 56(1), 96–115 (2012)) (2011)
Stepanov, E., Trevisan, D.: Three superposition principles: currents, continuity equations and curves of measures. J. Funct. Anal. 272(3), 1044–1103 (2017)
Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (2006)
Trevisan, D.: Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. 21, Paper No. 22, 41 pp (2016)