On the AC Spectrum of One-dimensional Random Schrödinger Operators with Matrix-valued Potentials

Springer Science and Business Media LLC - Tập 13 - Trang 219-233 - 2010
Richard Froese1, David Hasler2, Wolfgang Spitzer3
1Department of Mathematics, University of British Columbia, British Columbia, Canada
2Department of Mathematics, College of William & Mary, Williamsburg, USA
3Fakultät für Mathematik und Informatik, FernUniversität Hagen, Hagen, Germany

Tóm tắt

We consider discrete one-dimensional random Schrödinger operators with decaying matrix-valued, independent potentials. We show that if the ℓ2-norm of this potential has finite expectation value with respect to the product measure then almost surely the Schrödinger operator has an interval of purely absolutely continuous (ac) spectrum. We apply this result to Schrödinger operators on a strip. This work provides a new proof and generalizes a result obtained by Delyon et al. (Ann. Inst. H. Poincaré Phys. Théor. 42(3):283–309, 1985).

Tài liệu tham khảo

Albeverio, S., Konstantinov, A.: On the absolutely continuous spectrum of block operator matrices. Math. Nachr. 281(8), 1079–1087 (2008) Albeverio, S., Makarov, K., Motovilov, A.: Graph subspaces and the spectral shift function. Can. J. Math. 55(3), 449–503 (2003) Bourgain, J.: On random Schrödinger operators on ℤ2. Discrete Contin. Dyn. Syst. 8(1), 1–15 (2002) Bourgain, J.: Random lattice Schrödinger operators with decaying potential: some higher dimensional phenomena. In: Milman, V.D., Schechtman, G. (eds.) LNM, vol. 1807, pp. 70–98 (2003) Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Springer-Verlag, Berlin (1987) Davies, E.B.: The functional calculus. J. Lond. Math. Soc. 52(2), 166–176 (1995) Deift, P., Killip, R.: On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials. Commun. Math. Phys. 203(2), 341–347 (1999) Delyon, F., Simon, B., Souillard, B.: From power pure point to continuous spectrum in disordered systems. Ann. Inst. H. Poincaré Phys. Théor. 42(3), 283–309 (1985) Denisov, S.A.: Absolutely continuous spectrum of multidimensional Schrödinger operator. Int. Math. Res. Not. 2004(74), 3963–3982 (2004) Denisov, S.: On the preservation of absolutely continuous spectrum for Schrödinger operators. J. Funct. Anal. 231(1), 143–156 (2006) Denisov, S.: On a conjecture by Y. Last. arXiv:0908.3681 Froese, R., Hasler, D., Spitzer, W.: Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrödinger operators on graphs. J. Funct. Anal. 230(1), 184–221 (2006) Froese, R., Hasler, D., Spitzer, W.: Absolutely continuous spectrum for a random potential on a tree with strong transverse correlations and large weighted loops. Rev. Math. Phys. 21, 1–25 (2009) Kirsch, W., Krisha, M., Obermeit, J.: Anderson Model with decaying randomness-mobility edge. Math. Z. 235(3), 421–433 (2000) Klein, A.: Extended states in the Anderson model on the Bethe lattice. Adv. Math. 133(1), 163–184 (1998) Kotani, S., Simon, B.: Stochastic Schrödinger operators and Jacobi matrices on the strip. Commun. Math. Phys. 119(3), 403–429 (1988) Krishna, M.: Anderson model with decaying randomness-extended states. Proc. Indian Acad. Sci., Math. Sci. 100(4), 285–294 (1990) Krishna, M., Sinha, K.B.: Spectral properties of Anderson Type operators with decaying randomness. Proc. Indian Acad. Sci., Math. Sci. 111(2), 179–201 (2001) Laptev, A., Naboko, S., Safronov, O.: A Szegő condition for a multidimensional Schrödinger operator. J. Funct. Anal. 219(2), 285–305 (2005) Molchanov, S., Vainberg, B.: Schrödinger operators with matrix potentials. Transition from the absolutely continuous to the singular spectrum. J. Funct. Anal. 215(1), 111–129 (2004) Reed, M., Simon, B.: Methods of Modern Mathematical Physics III: Scattering Theory. Academic Press (1979) Schulz-Baldes, H.: Perturbation theory for Lyapunov exponents of an Anderson model on a strip. Geom. Funct. Anal. 14, 1089–1117 (2004) Simon, B.: Schrödinger operators in the twenty-first century. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000, pp. 283–288. Imperial College Press, London. Stollmann, P.: Caught by Disorder. Bound States in Random Media. Progress in Mathematical Physics. Birkhäuser, Boston (2001)