On the 3D Cahn–Hilliard equation with inertial term

Maurizio Grasselli1, Giulio Schimperna2, Antonio Segatti2, Sergey Zelik3
1Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
2Dipartimento di Matematica, Università di Pavia, Pavia, Italy
3Department of Mathematics, University of Surrey, Guildford, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Babin A., Vishik M.I.: Maximal attractors of semigroups corresponding to evolutionary differential equations. Mat. Sb., 126, 397–419 (1984)

Ball J.M.: Global attractors for damped semilinear wave equations. Partial differential equations and applications. Discrete Contin. Dyn. Syst., 10, 31–52 (2004)

Brézis H., Gallouet T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal., 4, 677–681 (1980)

Cahn J.W.: On spinodal decomposition. Acta Metall., 9, 795–801 (1961)

Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys., 28, 258–267 (1958)

M. Conti and G. Mola, 3-D viscous Cahn–Hilliard with memory, Math. Methods Appl. Sci., (2008), doi: 10.1002/mma.1091 .

Debussche A.: A singular perturbation of the Cahn–Hilliard equation. Asymptotic Anal., 4, 161–185 (1991)

Efendiev M., Miranville A., Zelik S.: Exponential attractors for a singularly perturbed Cahn–Hilliard system. Math. Nachr., 272, 11–31 (2004)

Elliott C.M., Zheng S.: On the Cahn–Hilliard equation. Arch. Rational Mech. Anal., 96, 339–357 (1986)

P. Fabrie, C. Galusinski, A. Miranville, and A. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, in “Partial differential equations and applications”, Discrete Contin. Dyn. Syst., 10 (2004), 211–238.

Galenko P., Jou D.: Diffuse-interface model for rapid phase transformations in nonequilibrium systems. Phys. Rev. E, 71, 046125 (2005) (13 pages)

Galenko P., Lebedev V.: Analysis of the dispersion relation in spinodal decomposition of a binary system. Philos. Mag. Lett., 87, 821–827 (2007)

Galenko P., Lebedev V.: Local nonequilibrium effect on spinodal decomposition in a binary system. Int. J. Thermodyn., 11, 21–28 (2008)

Galenko P., Lebedev V.: Nonequilibrium effects in spinodal decomposition of a binary system. Phys. Lett. A 372, 985–989 (2008)

Gatti S., Grasselli M., Miranville A., Pata V.: On the hyperbolic relaxation of the one- dimensional Cahn–Hilliard equation. J. Math. Anal. Appl. 312, 230–247 (2005)

Gatti S., Grasselli M., Miranville A., Pata V.: Hyperbolic relaxation of the viscous Cahn–Hilliard equation in 3-D. Math. Models Methods Appl. Sci. 15, 165–198 (2005)

S. Gatti, M. Grasselli, A. Miranville, and V. Pata, Memory relaxation of the one-dimensional Cahn–Hilliard equation, Dissipative phase transitions, 101–114, Ser. Adv. Math. Appl. Sci., 71, World Sci. Publ., Hackensack, NJ, 2006.

Grant C.P.: Spinodal decomposition for the Cahn–Hilliard equation. Comm. Partial Differential Equations 18, 453–490 (1993)

Grasselli M., Miranville A., Pata V., Zelik S.: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potential. Math. Nachr. 280, 1475–1509 (2007)

Grasselli M., Schimperna G., Zelik S.: On the 2D Cahn–Hilliard equation with inertial term. Comm. Partial Differential Equation 34, 137–170 (2009)

Kania M.B.: Global attractor for the perturbed viscous Cahn–Hilliard equation. Colloq. Math. 109, 217–229 (2007)

Kenmochi N., Niezgódka M., Pawłow I.: Subdifferential operator approach to the Cahn–Hilliard equation with constraint. J. Differential Equations 117, 320–356 (1995)

Maier-Paape S., Wanner T.: Spinodal decomposition for the Cahn–Hilliard equation in higher dimensions: nonlinear dynamics. Arch. Ration. Mech. Anal. 151, 187–219 (2000)

Miranville A., Zelik S.: Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27, 545–582 (2004)

Novick-Cohen A., Segel L.A.: Nonlinear aspects of the Cahn–Hilliard equation. Phys. D 10, 277–298 (1984)

Novick-Cohen A.: The Cahn–Hilliard equation: mathematical and modeling perspectives. Adv. Math. Sci. Appl. 8, 965–985 (1998)

Novick-Cohen A.: On Cahn–Hilliard type equations. Nonlinear Anal. 15, 797–814 (1990)

Nicolaenko B., Scheurer B., Temam R.: Some global dynamical properties of a class of pattern formation equations. Comm. Partial Differential Equations 14, 245–297 (1989)

Pata V., Prouse G., Vishik M.I.: Traveling waves of dissipative nonautonomous hyperbolic equations in a strip. Adv. Differential Equations 3, 249–270 (1998)

Pata V., Zelik S.: A result on the existence of global attractors for semigroups of closed operators. Commun. Pure Appl. Anal. 6, 481–486 (2007)

Rybka P., Hoffmann K.-H.: Convergence of solutions to Cahn–Hilliard equation. Comm. Partial Differential Equations 24, 1055–1077 (1999)

Segatti A.: On the hyperbolic relaxation of the Cahn–Hilliard equation in 3-D: approximation and long time behaviour. Math. Models Methods Appl. Sci. 17, 411–437 (2007)

Temam R.: “Infinite-Dimensional Dynamical Systems in Mechanics and Physics”. Springer-Verlag, New York (1997)

Vergara V.: A conserved phase field system with memory and relaxed chemical potential. J. Math. Anal. Appl. 328, 789–812 (2007)

W. von Wahl, On the Cahn–Hilliard equation u′ + Δ2 u−Δf(u) = 0, in Mathematics and mathematical engineering (Delft, 1985), Delft Progr. Rep., 10 (1985), 291–310.

Zheng S., Milani A.J.: Global attractors for singular perturbations of the Cahn–Hilliard equations. J. Differential Equations 209, 101–139 (2005)

Zheng S., Milani A.J.: Exponential attractors and inertial manifolds for singular perturbations of the Cahn–Hilliard equations. Nonlinear Anal. 57, 843–877 (2004)

Zelik S.: Asymptotic regularity of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete Contin. Dyn. Syst. 11, 351–392 (2004)

Zelik S.: Global averaging and parametric resonances in damped semilinear wave equations. Proc. Roy. Soc. Edinburgh Sect. A 136, 1053–1097 (2006)