On syndetic Riesz sequences

Springer Science and Business Media LLC - Tập 233 Số 1 - Trang 113-131 - 2019
Marcin Bownik1, Itay Londner2
1Department of Mathematics, University of Oregon, Eugene, USA
2School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. Bourgain and L. Tzafriri, Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel Journal of Mathematics 57 (1987), 137–224.

M. Bownik, P. Casazza, A. Marcus and D. Speegle, Improved bounds in Weaver and Feichtinger conjectures, Journal fu¨r die Reine und Angewandte Mathematik, 749 (2019), 267–293.

P. Casazza, O. Christensen, A. Lindner and R. Vershynin, Frames and the Feichtinger conjecture, Proceedings of the American Mathematical Society 133 (2005), 1025–1033.

P. Casazza and J. Tremain, The Kadison–Singer problem in mathematics and engineering, Proceedings of the National Academy of Sciences of the United States of America 103 (2006), 2032–2039.

P. Casazza and J. Tremain, Consequences of the Marcus/Spielman/Srivastava solution of the Kadison–Singer problem, on New Trends in Applied Harmonic Analysis, Applied and Numerical Harmonic Analysis, Birkhaüser/Springer, Cham, 2016, pp. 191–213.

D. Han and D. Larson, Frames, bases and group representations, Memoirs of the American Mathematical Society 147 (2000).

J.-P. Kahane, Sur les fonctions moyenne-périodiques bornées, Université de Grenoble. Annales de l’Institut Fourier 7 (1957), 293–314.

G. Kozma and N. Lev, Exponential Riesz bases, discrepancy of irrational rotations and BMO, Journal of Fourier Analysis and Applications 17 (2011), 879–898.

H. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Mathematica 117 (1967), 37–52.

W. Lawton, Minimal sequences and the Kadison–Singer problem, Bulletin of the Malaysian Mathematical Sciences Society 33 (2010), 169–176.

A. Marcus, D. A. Spielman and N. Srivastava, Interlacing families II: Mixed characteristic polynomials and the Kadison–Singer problem, Annals of Mathematics 182 (2015), 327–350.

B. Matei and Y. Meyer, Quasicrystals are sets of stable sampling, Comptes Rendus Mathématique. Académie des Sciences. Paris 346 (2008), 1235–1238.

B. Matei and Y. Meyer, A variant of compressed sensing, Revista Matemática Iberoamericana 25 (2009), 669–692.

B. Matei and Y. Meyer, Simple quasicrystals are sets of stable sampling, Complex Variables and Elliptic Equations 55 (2010), 947–964.

Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland Mathematical Library, Vol. 2, North-Holland, Amsterdam–London; Elsevier, New York, 1972.

Y. Meyer, Nombres de Pisot, nombres de Salem et Analyse Harmonique, Lecture Notes in Mathematics, Vol. 117, Springer, Berlin–New York, 1970.

A. Olevskii and A. Ulanovskii, Universal sampling and interpolation of band-limited signals, Geometric and Functional Analysis 18 (2008), 1029–1052.

A. Olevskii and A. Ulanovskii, Functions with Disconnected Spectrum, University Lecture Series, Vol. 65, American Mathematical Society, Providence, RI, 2016.

V. Paulsen, Syndetic sets, paving and the Feichtinger conjecture, Proceedings of the American Mathematical Society 139 (2011), 1115–1120.

M. Ravichandran and N. Srivastava, Asymptotically optimal multi-paving, International Mathematics Research Notices, to appear, arXiv:1706.03737.

R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, San Diego, CA, 2001.