On subdirect factors of a projective module and applications to system theory
Tóm tắt
We extend a result of Napp Avelli, van der Put, and Rocha with a system-theoretic interpretation to the noncommutative case: Let
$$P$$
be a f.g. projective module over a two-sided Noetherian domain. If
$$P$$
admits a subdirect product structure of the form
$$P \cong M \times _T N$$
over a factor module
$$T$$
of grade at least
$$2$$
then the torsion-free factor of
$$M$$
(resp.
$$N$$
) is projective.
Tài liệu tham khảo
Auslander, M., & Bridger, M. (1969). Stable module theory. Memoirs of the American Mathematical Society, no. 94. Providence, RI: American Mathematical Society.
Auslander, M. (1966). Coherent functors. In Proceedings of the Conference on Categorical Algebra (La Jolla, CA, 1965) (pp. 189–231). New York: Springer.
Bruns, W., & Herzog, J. (1993). Cohen–Macaulay rings, Cambridge studies in advanced mathematics (Vol. 39). Cambridge: Cambridge University Press.
Barakat, M., & Lange-Hegermann, M. (2011). An axiomatic setup for algorithmic homological algebra and an alternative approach to localization. Journal of Algebra and its Applications, 10(2), 269–293. (arXiv:1003.1943).
Barakat, M., & Lange-Hegermann, M. (2013). Characterizing Serre quotients with no section functor and applications to coherent sheaves. Applied Categorical Structures. Published online (arXiv:1210.1425).
Chyzak, F., Quadrat, A., & Robertz, D. (2005). Effective algorithms for parametrizing linear control systems over Ore algebras. Applicable Algebra in Engineering, Communication and Computing, 16(5), 319–376. http://www-sop.inria.fr/members/Alban.Quadrat/PubsTemporaire/AAECC.pdf.
Chyzak, F., Quadrat, A., & Robertz, D. (2007). OreModules: a symbolic package for the study of multidimensional linear systems. Applications of time delay systems. Lecture notes in control and information science (Vol. 352, pp. 233–264). Berlin: Springer. http://wwwb.math.rwth-aachen.de/OreModules.
Eisenbud, D. (1995). Commutative algebra. Graduate texts in mathematics (Vol. 150). New York: Springer. With a view toward algebraic geometry.
Fliess, M. (1990). Some basic structural properties of generalized linear systems. Systems & Control Letters, 15(5), 391–396.
Fröhler, S., & Oberst, U. (1998). Continuous time-varying linear systems. Systems & Control Letters, 35(2), 97–110.
Hilton, P. J., & Stammbach, U. (1997). A course in homological algebra. Graduate texts in mathematics (2nd ed., Vol. 4). New York: Springer.
Ishikawa, T. (1964). Faithfully exact functors and their applications to projective modules and injective modules. Nagoya Mathematical Journal, 24, 29–42.
Lam, T. Y. (1999). Lectures on modules and rings. Graduate texts in mathematics (Vol. 189). New York: Springer.
Lam, T. Y. (2006). Serre’s problem on projective modules. Springer monographs in mathematics. Berlin: Springer.
Napp Avelli, D., & Rocha, P. (2010). Autonomous multidimensional systems and their implementation by behavioral control. Systems & Control Letters, 59(3–4), 203–208.
Oberst, U. (1990). Multidimensional constant linear systems. Acta Applicandae Mathematica, 20(1–2), 1–175.
Pommaret, J. F., & Quadrat, A. (1999). Algebraic analysis of linear multidimensional control systems. IMA Journal of Mathematical Control and Information, 16(3), 275–297.
Robertz, D. (2006). Formal computational methods for control theory. Ph.D. thesis, RWTH Aachen, Germany, June 2006. This thesis is available at http://darwin.bth.rwth-aachen.de/opus/volltexte/2006/1586.
Stenström, B. (1975). Rings of quotients. New York: Springer. Die Grundlehren der Mathematischen Wissenschaften, Band 217. An introduction to methods of ring theory.
The homalg project authors. (2003–2013). The homalg project—algorithmic homological algebra. http://homalg.math.rwth-aachen.de/.
Zerz, E. (2006). An algebraic analysis approach to linear time-varying systems. IMA Journal of Mathematical Control and Information, 23(1), 113–126.