On some geometric methods in scheduling theory: a survey

Discrete Applied Mathematics - Tập 55 Số 1 - Trang 59-82 - 1994
Sergey Sevast'janov1
1Institute of Mathematics, Novosibirsk 630090, Russian Federation

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akers, 1955, A non-numerical approach to production scheduling problems, Oper. Res., 3, 429

Babuskin, 1976, Scheduling a three machine job shop, Avtomat. i Telemeh., 7, 154

Babuskin, 1977, Construction of a schedule for the problem of counter-routes, Kibernetika, 4, 130

Babuskin, 1975, Minimization of a flow-line working time, Avtomat. i Telemeh., 6, 161

Banaszczyk, 1987, The Steinitz constant of the plane, J. Reine Angew. Math., 373, 218

Banaszczyk, 1990, A note on the Steinitz constant of the euclidean plane, C.R. Math. Rep. Acad. Sci. Canada, 12, 97

Barany, 1981, A vector-sum theorem and its application to improving flow shop guarantees, Math. Oper. Res., 6, 445, 10.1287/moor.6.3.445

Bárány, 1982, Nearly optimum solution of multimachine scheduling problems, Szigma, 15, 177

Beck, 1981, “Integer-making” theorems, Discrete Appl. Math., 3, 1, 10.1016/0166-218X(81)90022-6

Belov, 1974, An algorithm for the single-route scheduling problem, 248

Bergström, 1931, Ein neuer Beweis eines Satzes von E. Steinitz, Abh. Math. Sem. Univ. Hamburg, 8, 148, 10.1007/BF02940994

Bergstrom, 1931, Zwei Sätze über ebene Vektorpolygone, Abh. Math. Sem. Univ. Hamburg, 8, 206, 10.1007/BF02941002

Blazewicz, 1987, Selected topics in scheduling theory, Ann. Discrete Math., 31, 1

Danil'chenko, 1985, An approximate algorithm for the three-machine problem, Automat. Remote Control, 46, 896

Dočatov, 1970, On some generalizations of one-route calendar planning problem, Inform. Process. Comput., 29, 92

Dusin, 1980, Note on the algorithm for Johnson's single route problem, Kibernetika, 2, 129

Dusin, 1988, Algorithm for the 2-route Johnson problem, Kibernetika, 3, 53

Dusin, 1989, Algorithm for the p-route Johnson problem, Kibernetika, 2, 119

Fiala, 1977, Near optimal algorithm for the three machine problem, Alkalmaz. Mat. Lapok, 3, 389

Fiala, 1983, An algorithm for the open-shop problem, Math. Oper. Res., 8, 100, 10.1287/moor.8.1.100

Gonzales, 1976, Open shop scheduling to minimize finish time, J. ACM, 23, 665, 10.1145/321978.321985

Gross, 1917, Bedingt konvergente Reihen, Monatsh. Math. Phys., 28, 221, 10.1007/BF01698244

Johnson, 1954, Optimal two and three-stage production schedules with set-up times included, Naval. Res. Logist. Quart., 1, 61, 10.1002/nav.3800010110

Kadeč, 1953, On a property of polygonal paths in n-dimensional space, Uspekhi Mat. Nauk, 8, 139

Lauler, 1989, Sequencing and scheduling: algorithms and complexity, 70

Levner, 1973, A network approach to problems of scheduling theory, 135

Mitten, 1959, A Scheduling Problem, J. Indust. Engrg., 10, 131

Nabeshima, 1963, Sequencing on two machines with start lag and stop lag, J. Oper. Res. Soc. Japan, 5, 97

Neumitov, 1993, An approximation algorithm with best possible bound for the counter routes problem with three machines, Upravlyaemye Sistemy, 31, 53

Sevast'janov, 1974, The asymptotic approach to certain problems of scheduling theory, Third All-Union Conference Problems of Theoretical Cybernetics: Thes. Dokl. Novosibirsk, June 1974, Novosibirsk, 67

Sevest'janov, 1975, The asymptotic approach to certain problems of scheduling theory, Upravlyaemye Systemy, 14, 40

Sevast'janov, 1978, Approximate solution of some scheduling problems, Metody Diskret. Analiz., 32, 66

Sevast'janov, 1979, On the compact vector summation problem, Metody Diskret. Analiz., 33, 77

Sevast'janov, 1980, Approximate solution of a scheduling problem, Upravlyaemye Sistemy, 20, 49

Sevast'janov, 1980, Approximation algorithms for Johnson's and vector summation problems, Upravlyaemye Systemy, 20, 64

Sevast'janov, 1981, Estimates and properties of Steinitz functions, Metody Diskret. Analiz., 36, 59

Sevast'janov, 1981, Some generalizations of the Johnson problem, Upravlyaemye Systemy, 21, 45

Sevast'janov, 1982, Algorithms with estimates for the Johnson and the Akers-Friedman problems in the case of three machines, Upravlyaemye Systemy, 22, 51

Sevast'janov, 1984, Efficient construction of near-optimal schedules for cases of arbitrary and alternative routing of jobs, Soviet. Math. Dokl., 29, 447

Sevast'janov, 1986, An algorithm with an estimate for a problem with routings of parts of arbitrary shape and alternative executors, Cybernetics, 22, 773, 10.1007/BF01068694

Sevast'janov, 1988, Geometry in scheduling theory, Models and methods of optimization, Trudy Inst. Mat., 10, 226

Sevast'janov, 1991, On a compact vector summation, Discret. Mat., 3, 66

Sevast'janov, 1992, Polynomially solvable case of the open shop problem with arbitrary number of machines, Kibernet. Sistem. Anal., 6, 135

S.V. Sevast'janov, Vector summation in Banach space and polynomial algorithms for flow shops and open shops, Math. Oper. Res., to appear.

Sevast'janov, 1993, Construction of an approximate schedule for a flow-type system, Upravlyaemye Sistemy, 31, 66

Skurba, 1966

Steinitz, 1913, Bedingt konvergente Reihen und convexe Systeme, J. Reine Angew. Math., 143, 128, 10.1515/crll.1913.143.128

N. Stolin, 1976, Solution of the Johnson three-machine problem with the accuracy of 4 max tij, Numerical methods of nonlinear programming, 287

Tanaev, 1989, Scheduling theory