On some 2-adic properties of a recurrence involving stirling numbers

Pleiades Publishing Ltd - Tập 4 Số 3 - Trang 179-186 - 2012
Tamás Lengyel1
1Occidental College

Tóm tắt

Từ khóa


Tài liệu tham khảo

T. Amdebenrhan, D. Manna, and V. H. Moll, “The 2-adic valuation of Stirling numbers,” Exp. Math. 17, 69–82 (2008).

L. Babai and T. Lengyel, “A convergence criterion for recurrent sequences with application to the partition lattice,” Analysis 12, 109–119 (1992).

S. DeWannemacker, “On 2-adic orders of Stirling numbers of the second kind,” Integers. Elect. J.Combin. Numb. Theory 5(1), A21, 7 pp. (electronic), 2005.

S. DeWannemacker, “On a conjecture ofWilf,” J. Comb. Theory, Ser. A 114:7, 1332–1349 (2007).

S. R. Finch, “Lengyel’s constant,” in Mathematical Constants, Encyclopedia of Math. and its Appl. (No. 94), 316–321 (Cambridge Univ Press, 2003).

P. Flajolet and B. Salvy, “Hierarchical set partitions and analytic iterates of the exponential function,” 13 pp. (unpublished manuscript, 1990).

A. Granville, “Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers,” in Organic Mathematics (Burnaby, BC, 1995), vol. 20 of CMS Conf. Proc., 253–276 (Amer. Math. Soc., Providence, RI, 1997). Elect. version (a dynamic survey): http://www.dms.umontreal.ca/~andrew/Binomial/ .

T. Lengyel, “On a recurrence involving Stirling numbers,” Europ. J. Combin. 5, 313–321 (1984).

T. Lengyel, Letter to Prof. Lucien D. Van Hamme, (1998).

T. Lengyel, “On the divisibility by 2 of the Stirling numbers of the second kind,” Fibonacci Quart. 32, 194–201 (1994).

T. Lengyel, “On the 2-adic order of Stirling numbers of the second kind and their differences,” 21st Int. Conf. on Formal Power Series & Alg. Combin. (FPSAC 2009) (Hagenberg, Austria. 2009), Discrete Math. Theor. Comput. Sci. Proc. AK, 561–572 (2009). Downloadable from: http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAK0147/ .

T. Lengyel, “Alternative proofs on the 2-adic order of Stirling numbers of the second kind,” Integers. Elect. J. Combin. Numb. Theory 10, 453–463 (2010).

T. Prellberg, “On the asymptotic analysis of a class of linear recurrences,” talk given at the 14th Int. Conf. on Formal Power Series & Alg. Combin. (FPSAC 2002) (Melbourne, Australia, 2002). Downloadable from: http://www.maths.qmw.ac.uk/~tp/talks/recurrence.pdf .

N. J. A. Sloane, “Sequence A005121,” The Encyclopedia of Integer Sequences (Acad. Press, 1995), http://www.research.att.com/~njas/sequences/A005121 , (on the decimal expansion: A086053, cf. http://www.research.att.com/~njas/sequences/A086053 and a possible and surprising interpretation: A097906, cf. http://www.research.att.com/~njas/sequences/A097906 .

L. Van Hamme, “Solution to Problem 6658,” Amer.Math. Monthly 100, 953–954 (1993).

E. W. Weisstein, “Lengyel’s constant,” in CRC Concise Encyclopedia of Mathematics p. 1749 (Chapman & Hall / CRC, 2002).